Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A vocal tract model based on a digital waveguide is presented in which the vocal tract has been decomposed into uniform cylindrical segments of variable lengths. We present a model for the real-time numerical solution of the digital waveguide equations in a uniform tube with the temporally varying cross section. In the current work, the uniform cylindrical segments of the vocal tract may have their different lengths, the time taken by the sound wave to propagate through a cylindrical segment in an axial direction may not be an integer multiple of each other. In such a case, the delay in an axial direction is necessarily a fractional delay. For the approximation of fractional-delay filters, Lagrange interpolation is used in the current model. Variable length of the individual segment of the vocal tract enables the model to produce realistic results. These results are validated with accurate benchmark model. The proposed model has been devised to elongate or shorten any arbitrary cylindrical segment by a suitable scaling factor. This model has a single algorithm and there is no need to make section of segments for elongation or shortening of the intermediate segments. The proposed model is about 23% more efficient than the previous model.

Go to article

Authors and Affiliations

Tahir Mushtaq Qureshi
Muhammad Ishaq
Download PDF Download RIS Download Bibtex

Abstract

For many years, a digital waveguide model is being used for sound propagation in the modeling of the vocal tract with the structured and uniform mesh of scattering junctions connected by same delay lines. There are many varieties in the formation and layouts of the mesh grid called topologies. Current novel work has been dedicated to the mesh of two-dimensional digital waveguide models of sound propagation in the vocal tract with the structured and non-uniform rectilinear grid in orientation. In this work, there are two types of delay lines: one is called a smaller-delay line and other is called a larger-delay line. The larger-delay lines are the double of the smaller delay lines. The scheme of using the combination of both smaller- and larger-delay lines generates the non-uniform rectilinear two-dimensional waveguide mesh. The advantage of this approach is the ability to get a transfer function without fractional delay. This eliminates the need to get interpolation for the approximation of fractional delay and give efficient simulation for sound wave propagation in the two-dimensional waveguide modeling of the vocal tract. The simulation has been performed by considering the vowels /ɔ/, /a/, /i/ and /u/ in this work. By keeping the same sampling frequency, the standard two-dimensional waveguide model with uniform mesh is considered as our benchmark model. The results and efficiency of the proposed model have compared with our benchmark model.

Go to article

Authors and Affiliations

Tahir Mushtaq Qureshi
Khalid Saifullah Syed
Asim Zafar

This page uses 'cookies'. Learn more