Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Conventional membranes used in the process of premix membrane emulsification are prone to fouling, especially when biopolymers are employed as surfactants. An alternative to conventional membranes are dynamic membranes consisting of an unconsolidated porous medium. Dynamic membranes have the advantage of enabling easy cleaning of the inside of the pores. Experimental research carried out to date has focused on the application of hydrophilic dynamic membranes composed of glass microbeads for producing o/w emulsions. The aims of this study were to determine the efficiency of droplet size reduction in a w/o emulsion when passed through a dynamic hydrophobic membrane consisting of a bed of irregular polymer particles, and to assess the effect of multiple membrane passes on the properties of the w/o emulsion. The dynamic membranes evaluated in the tests were found to reduce the diameters of premix droplets when an appropriate pressure level was reached. Higher bed porosity was associated with greater fluxes achieved across the packed bed, but the resulting emulsions were less homogeneous. Multiple passes of the emulsion through the dynamic polypropylene membrane led to a further reduction in droplet size, but it was accompanied by a decline in emulsion homogeneity.
Go to article

Authors and Affiliations

Adrianna Frankiewicz
1
ORCID: ORCID
Jacek Różański
1
ORCID: ORCID

  1. Poznan University of Technology, Institute of Chemical Technology and Engineering, ul. Berdychowo 4, 60-965 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the effects of sodium chloride on the rheological properties of aqueous solutions of cocamidopropyl betaine (CAPB) and sodium dodecylbenzene sulfonate (SDBS) mixtures. Studies were carried out in the CAPB/SDBS molar ratio range of 0.95 to 3.5, at sodium chloride concentrations varying from 0.03 M to 0.75 M. Continuous and oscillatory flow measurements showed that the impact of sodium chloride concentration on shear viscosity and relaxation time was closely linked to the CAPB/SDBS molar ratio. The maximum shear viscosity and the longest Maxwell relaxation time were obtained at the CAPB/SDBS molar ratio of 2. Based on CryoTEM images, it was determined that the shear viscosity and relaxation time peaks identified at a certain concentration of sodium chloride could be attributed to the transition of the entangled wormlike micellar network into branched wormlike micelles. Changes in the micellar microstructure accompanying modifications of the CAPB/SDBS molar ratio and sodium chloride concentration were accounted for on the basis of the packing parameter.
Go to article

Authors and Affiliations

Sylwia Różańska
1
Ewelina Warmbier
1
Patrycja Wagner
1
Jacek Różański
1
ORCID: ORCID

  1. Poznan University of Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60-965 Poznań, Poland

This page uses 'cookies'. Learn more