Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Metallic foams are materials of which the research is still on-going, with the broad applicability in many different areas (e.g. automotive

industry, building industry, medicine, etc.). These metallic materials have specific properties, such as large rigidity at low density, high

thermal conductivity, capability to absorb energy, etc. The work is focused on the preparation of these materials using conventional casting

technology (infiltration method), which ensures rapid and economically feasible method for production of shaped components. In the

experimental part we studied conditions of casting of metallic foams with open pores and irregular cell structure made of ferrous and nonferrous

alloys by use of various types of filler material (precursors).

Go to article

Authors and Affiliations

P. Lichý
I. Kroupová
F. Radkovský
V. Bednářová
Download PDF Download RIS Download Bibtex

Abstract

The work deals with possibilities of using this specific material. It is focused on cast metal foams with a regular arrangement of internal cells and it refers to already used casting technologies – the production of metal foamswith the aid of sand cores. Metal foamsare used in many industries, such as: automotive, aerospace, construction, power engineering. They have unique propertiesand due to lower weight with sufficient strength and greater contact surface can be used, for example, for the conduction of heat. This article deals with the useof the metal foam as a heat exchanger. The efficiency of the heat exchanger depends on its shape and size and therefore the study is focused first on the optimization of the shape before the proper manufacture.

Go to article

Authors and Affiliations

F. Radkovský
M. Gebauer
V. Merta
Download PDF Download RIS Download Bibtex

Abstract

The article describes the design of a proven technology for the production of metal foam and porous metal by the foundry. Porous metal formed by infiltrating liquid metal into a mould cavity appears to be the fastest and most economical method. However, even here we cannot do without the right production parameters. Based on the research, the production process was optimised and subsequently a functional sample of metal foam with an irregular internal structure - a filter - was produced. The copper alloy filter was cast into a gypsum mould using an evaporable model.
Furthermore, a functional sample of porous metal with a regular internal structure was produced - a heat exchanger. The aluminium alloy heat exchanger was cast into a green sand mould using preforms. Also, a porous metal casting with a regular internal structure was formed for use as an element in deformation zones. This aluminium alloy casting was made by the Lost Foam method. The aim is therefore to ensure the production of healthy castings, which would find use in the field of filtration of liquid metal or flue gases, in vehicles in the field of shock energy absorption and also in energy as a heat exchanger.
Go to article

Bibliography

[1] Lefebvre, L.P., Banhart, J. & Dunand, D. (2008). Porous metals and metallic foams: current status and recent developments. Advanced Engineering Materials. 10(9), 775-787.
[2] Banhart, J. (2001). Manufacture, characterisation and application of cellular metals and metal foams. Progress in Materials Science. 46(6), 559-632.
[3] Banhart, J. (2007). Metal Foams - from Fundamental Research to Applications [online], URL: < https://www.helmholtz-berlin.de/media/media/spezial/people/banhart/html/B-Conferences/b097_banhart2007.pdf>.
[4] Gaillard, Y., Dairon, J., & Fleuriot, M. (2011). Porous materials: innovations with many uses. Slévárenství. 11-12, roč. LIX, 374-378. (in Czech).
[5] Banhart, J. (2005). Aluminium foams for lighter vehicles. International Journal of Vehicle Design. 37, Nos. 2/3, 114-125. [online]. URL: < http://www.helmholtz-berlin.de/media/media/spezial/people/banhart/html/A-Journals/open/article/a082_banhart2005.pdf>.
[6] García-Moreno, F. Commercial Applications of Metal Foams: Their Properties and Production. [online]. URL: < http://www.mdpi.com/1996-1944/9/2/85/html>.
[7] Banhart, J. Metallic Foams II: properties and application [online]. URL: < http://materialsknowledge.org/docs/ Banhart-talk2.pdf>.
[8] Landolsi, M.W. (2016). Metal foam - an innovative material. [online]. URL: < https://conceptec.net/actualites/innovations/ 111-mousse-metallique-un-materiau-innovant>. (in Czech).
[9] Lulusoso. Composite cladding panel manufacturers [online]. URL: < http://www.lulusoso.com/products/ Composite-Cladding-Panel-Manufacturers.html>.
[10] Erg Materials and Aerospace; Duocel® Foam Cells. [online]. URL: < http://www.ergaerospace.com/products/ fuel-cells.html>.
[11] Kroupová, I., Lichý, P., Ličev, L., Hendrych, J. & Souček, K. (2018). Evaluation of properties of cast metal foams with irregular inner structure. Archives of Metallurgy and Materials. 63(4), 1845-1849. ISSN 1733-3490.
[12] Kroupova, I., Bednarova, V., Elbel, T. & Radkovsky, F. (2014). Proposal of method of removal of mould material from the fine structure of metallic foams used as filters. Archives of Metallurgy and Materials. 59(2), 727-730. ISSN 1733-3490.
[13] Yamada. Y., Shimojima, K., Sakaguchi, Y., Mabuchi, M., Nakamura, M., Asahina, T., Mukai, T., Kanahashi, H. & Higashi, K. (2000). Effects of heat treatment on compressive properties of AZ91 Mg and SG91A Al foams with open-cell structure. Materials Science and Engineering: A. 280(1), 225-228. DOI: https://doi.org/ 10.1016/S0921-5093(99)00671-1.
[14] Gawdzinska, K., Chybowski, L. & Przetakiewicz, W. (2017). Study of thermal properties of cast metal-ceramic composite foams. Archives of Metallurgy and Materials. 17(4), 47-50. ISSN 1897-3310.
[15] Haack, P.D., Butcher, R.P., Kim, T. & Lu, J.T. (2001). Novel lightweight metal foam heat exchangers. porvair fuel cell technology, Inc., Department of Engineering, University of Cambridge. January, [online]. URL: < https://www.researchgate.net/publication/267721239_Novel_Lightweight_Metal_Foam_Heat_Exchangers>.
[16] Radkovský, F., Merta, V. (2020). Use of numerical simulation in production of porous metal casting. Archives of Metallurgy and Materials. 54(2), 259-261. ISSN 1580-2949. DOI: 10.17222/mit.2019.145.
[17] Radkovský, F., Gebauer, M., Kroupová, I., Lichý, P. (2017). Metal foam as a heat exchanger. In METAL 2017, Conference proceedings, 26th Anniversary International Conference on Metallurgy and Materials, Tanger Ltd., Ostrava, 24. - 26. 5. 2017, Hotel Voroněž I, Brno.
[18] Lu, T.J., Stone, H.A. & Ashby, M.F. (1998). Heat transfer in open-cell metal foams. Acta Materialia. 46(10, 12) June, 3619-3635. DOI: https://doi.org/10.1016/S1359-6454(98) 00031-7
[19] Boomsma, K., Poulikakos, D. & Zwick, F. (2003). Metal foams as compact high performance heat exchangers. Mechanics of Materials, 35(12), 1161-1176. DOI: https://doi.org/10.1016/j.mechmat.2003.02.001.
[20] Hutter, C., Büchi, D., Zuber, V. & Rohr, R. (2011). Heat transfer in metal foams and designed porous media. Chemical Engineering Science. 66(17), 1 September 2011, 3806-3814. DOI: https://doi.org/10.1016/j.ces.2011.05.005
[21] Lichý, P., Elbel, T., Kroupová, I. & Radkovský, F. (2017). Preparation and evaluation of properties of cast metallic foams with regular inner structure. Archives of Metallurgy and Materials. 62(3), 1643-1646. ISSN 1733-3490. DOI: 10.1515/amm-2017-0251.
[22] Romanek, T. (2017). Manufacturing and Properties of Cast Metallic Foams with Regular Structure, Ostrava, Diploma thesis, VSB - Technical University of Ostrava, [online]. URL: http://www.ergaerospace.com/products/fuel-cells.htm>.
[23] Radkovský, F., Gebauer, M. & Merta, V. (2018). Optimizing of metal foam design for the use as a heat exchanger. Archives of Metallurgy and Materials. 63(4), 1875-1881. ISSN 1733-3490.

Go to article

Authors and Affiliations

F. Radkovský
1
ORCID: ORCID
V. Merta
1
ORCID: ORCID
T. Obzina
1

  1. VSB - Technical University of Ostrava, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with the possibilities of influencing the final microstructure of aluminium alloy castings by changing the external conditions of crystallization and solidification. Aluminum alloys, especially Al-Si alloys, are nowadays one of the most used non-ferrous metal alloys, especially due to their mass application in the automotive field. It is in this industry that extreme emphasis is placed on the quality of cast parts with regard to safety. For this reason, a key production parameter is the mastery of the control of the resulting microstructure of the castings and the associated internal quality, which is subject to high demands defined by international standards. The aim of the experiment of this paper is to evaluate the effect of different preheating of the metal mould on the resulting structure and hardness of test castings made of AlSi7Mg0.3 material. The hardness measurement will be evaluated on a hardness tester. The parameter SDAS, Microporosity, Content of excluded eutectic will be evaluated. Dependencies will be found and plotted.
Go to article

Authors and Affiliations

F. Radkovský
1
ORCID: ORCID
M. Gawronová
1
ORCID: ORCID
I. Kroupová
1
ORCID: ORCID

  1. VSB - Technical University of Ostrava, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an overview of a research on six practical cases that were solved in a precise casting company where parts are cast by the mean of the low-wax casting method (investment casting) in order to decrease poor quality production. The steel cast parts production technology by the lost-wax method requires the detailed work procedures observation. On the base of statistical processing data of given types of casting products, it was possible to assess the significance of each particular checking events by using the statistical hypothesis testing. The attention was focused on wax and ceramic departments. The data in technological flow were compared before and after the implementation of the change and statistical confirmative influences were assessed. The target consisted in setting such control manners in order to get the right conditions for decreasing poor quality parts. It was evidenced that the cast part defect cause correct identification and interpretation is important.
Go to article

Bibliography

[1] Elbel, T., Havlíček, F., Jelínek, P., Levíček, P., Rous, J., Stránský, K. (1992). Defects of iron alloy castings (classification, causes and prevention). Brno: MATECS. (in Czech).
[2] Nenadál, J. (2004). Measurement in quality management systems. Praha: Management Press. (in Czech).
[3] Lakomá, R., Čamek, L. (2013). Possibilities for quality control of casting products . In 22nd International Conference on Metallurgy and Materials, Metal, 15th-17th May 2013 (p. 40). Brno, Czech Republic, TANGER s. r. o. Ostrava. ISBN 978-80-87294-39-0.
[4] Plura, J. (2001). Planning and continuous quality improvement. Praha: Computer Press. (in Czech).
[5] Čamek, L., Lichý, P., Kroupová, I., Duda, J., Beňo, J., Korbáš, M., Radkovský, F., Bliznyukov, S. (2016). Effect of cast steel production metallurgy on the emergence of casting defect. Metalurgija. 55(4), 701-704. ISSN 0543-5846.
[6] Jezierski, J., Dojka, K., Kubiak, K., et al. (2016). Experimental approach for optimization of gating system in castings. In 25th International Conference on Metallurgy and Materials, Metal 25th-27th May (pp. 104-109). Brno, Czech Republic, TANGER s. r. o. Ostrava. ISSN 0543-5846.
[7] Jaromin, M., Dojka, R., Jezierski, J., Dojka, M. (2019). Influence of Type and Shape of the Chill on Solidification Process of Steel Casting. Archives of Foundry Engineering. 19(1), 35-40. ISSN (1897-3310).
[8] Richtarech, L., Bolibruchova, D.; Bruna, M.; Caiss, J. (2015). Influence of Nickel Addition on Properties of Secondary AlSi7Mg0.3 Alloy‎. Archives of Foundry Engineering. 15(2), 95-98. ISSN (1897-3310). DOI: 10.1515/afe-2015-0046.
[9] Merta, V., Lána, I. (2020). Manufacturing of Cast-metal Sponges from Copper Alloys. Materiali in Technologije. 54(1), 117-119. DOI: 10.17222/mit.2019.159.
Go to article

Authors and Affiliations

R. Lakomá
1
L. Čamek
2
P. Lichý
2
ORCID: ORCID
I. Kroupová
1
ORCID: ORCID
F. Radkovský
1
ORCID: ORCID
T. Obzina
1

  1. VSB - Technical university of Ostrava, Czech Republic
  2. Brno University of Technology, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

This paper describes the technology for the production of precursors (space holder material) used to form the complex internal structure of cast metal foam. The precursor material must exhibit sufficient refractoriness, resist contact with liquid metal and at the same time should exhibit good collapsibility after casting. With regard to the greening of foundry production, the focus of this paper was on materials that could exhibit the above properties and at the same time do not have a negative impact on the environment. In this paper, the technology for the production of spherical precursors from a self-hardening mixture with a geopolymer-based binder system is described and verified. The motivation for the choice of material and all the sub-steps of the process – molding into the core box, tumbling, including the necessary accompanying tests of the mechanical properties of the core mixture being verified – are described.
Go to article

Authors and Affiliations

I. Kroupová
1
ORCID: ORCID
M. Bašistová
1
ORCID: ORCID
P. Lichý
1
ORCID: ORCID
V. Merta
1
ORCID: ORCID
F. Radkovský
1
ORCID: ORCID
J. Jezierski
2
ORCID: ORCID

  1. VŠB-Technical University of Ostrava, Faculty of Materials Science and Technology, Department of Metallurgical Technologies, 17. Listopadu 2172/15, Ostrava-Poruba, Czech Republic
  2. Silesian University of Technology, Faculty of Mechanical Engineering, Department of Foundry Engineering, 2 Towarowa Str., 744-100 Gliwice, Poland

This page uses 'cookies'. Learn more