Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Desired rock fragmentation is the need of the hour, which influences the entire mining cycle. Thus, most engineering segments pay attention to rock fragmentation and neglect by-products like ground vibration and fly rock. Structural and mechanical properties of rock mass like joint spacing, joint angle, and compressive strength of rock pose a puzzling impact on both fragmentation and ground vibration. About 80% of explosive energy that gets wasted in producing ill effects can be positively optimised, with a new set of blast design parameters upon identifying the behaviour of rock mass properties. In this connection, this research aims to investigate the influence of joint spacing, joint angle, and compressive strength of rock on fragmentation and induced ground vibration. To accomplish this task, research was carried out at an opencast coal mine. It was discovered from this research that compressive strength, joint spacing, and joint angle have a significant effect on the mean fragmentation size (MFS) and peak particle velocity (PPV). With the increase in compressive strength, MFS explicit both increase and decrease trends whilst PPV increased with a specific increase in compressive strength of the rock. An increase in joint spacing triggers both increase and decrease trends in both MFS and PPV. While there is an increase in joint angle, MFS and PPV decrease.
Go to article

Bibliography

[1] R .L. Ash, Ph.D. Thesis, The Influence of Geological Discontinuities on Rock Blasting, University of Minnesota, United States (1973).
[2] A.K. Hakan, Adnan Konuk, The effect of discontinuity frequency on ground vibrations produced from bench blasting: A case study. Soil Dyn. Earthq. 28 (9), 686-694 (2008). DOI : https://doi.org/10.1016/J.SOILDYN.2007.11.006
[3] B.S. Choudhary, K. Sonu, K. Kishore, S. Anwar, Effect of rock mass properties on blast-induced rock fragmentation. Int. J. Min. Miner. Eng. 7 (2), 89-101 (2016). DOI: https://dx.doi.org/10.1504/IJMME.2016.076489
[4] G .R. Adhikari, M.M. Singh, R.N. Gupth, Influence of rock properties on blast-induced vibration. Min. Sci. Technol. 8 (3), 297-300 (1989). DOI: https://doi.org/10.1016/S0167-9031(89)90437-4
[5] R .E. Goodman, Methods of Geological engineering in discontinuous Rock. West Publishing, St. Paul. (1976).
[6] M. King, L. Myerand, J. Rezowalli, Experimental studies of elastic-wave propagation in a columnar-jointed rock mass. Geophys. Prospect. 34, 1185-1199 (1986). DOI: https://doi.org/10.1111/j.1365-2478.1986.tb00522.x
[7] G . Berta, Blasting-induced vibration in tunneling. unn. Undergr. Space Technol. (9), 175-187 (1994). DOI : https://doi.org/10.1016/0886-7798(94)90029-9
[8] S.P. Singh, The influence of geology on blast damage. CIM Bulletin, Conference: 26th International conference on ground control in mining At: Morgantown, West Virginia, USA (2007).
[9] R .E. Goodman, Block Theory and Its Application to Rock Engineering. Geotechnique. ISSN 0016-8505 | E-ISSN 1751-7656. 45 (3) 383-423 (1995). DOI: https://doi.org/10.1680/geot.1995.45.3.383
[10] P.R. La Pointe, H.G. Ganow, The influence of cleats and joints on production blast fragment size in the Wyodak Coal, Compbell Country, Wyoming, in Proceedings of the 27th US Symposium on Rock Mechanics, University of Alabama. pp. 464-70 (1986).
[11] D . Van Zyl, An approach to incorporate rock fabric information in blast fragmentation investigation. In Proceedings of the 2nd Mini-Symposium on Explosives and Blasting Research, Society of Explosives Engineers, Georgia. pp. 81-89 (1986).
[12] E.I. Efremov, V.M. Komir, N.I. Myachina, V.A. Nikiforova, S.N. Rodak, V.V. Shelenok, Influence of the structure of a medium on fragment size composition in blasting. Sov. Min. Sci. 16, 18-22 (1980). DOI : https://doi.org/10.1007/BF02504281
[13] Y .K. Wua, H. Haoa, Y.X. Zhoub, K. Chongb, Propagation characteristics of blast-induced shock waves in a jointed rock mass. Soil Dyn. Earthq. Eng. 17, 407-412 (1998). DOI: https://doi.org/10.1016/S0267-7261(98)00030-X
[14] W . Fourney, R.D. Dick, D.F. Fordyce, T.A. Weaver, Effects of Open Gaps on Particle Velocity Measurements. Rock Mech. Rock Eng. 30 (2), 95-111 (1997). DOI: https://doi.org/10.1007/BF01020127
[15] R ustan, Z.G. Yang, The influence from primary structure on fragmentation. 1st. International Symposium on rock fragmentation by blasting. Lulea, Sweden. 2, 581-604 (1983).
[16] W .L. Fourney, Mechanisms of rock fragmentation in by blasting. Hudson J.A, editor. Compressive rock engineering, principles, practice and projects. Oxford: Pergamon Press (1993).
[17] R .K.Paswan, Mohammad. Sarim, P.K. Singh, H.S. Khare, B.K. Singh, R.J. Singh, Controlled blasting at Parsa East &KantaBasan opencast mines for safe and efficient Mining operations. Ind. Min. & Eng. J. 53 (4), 7-17 (2014).
[18] C.L. Jimeno, E. Jimeno, F.J.A. Carcedo, Drilling and Blasting of Rocks. A.A. Balkema Publishers, Rotterdam, The Netherlands. (1995). DOI: https://doi.org/10.1080/09208119608964786
[19] T .H. Lewandowski, V.K. Luan Mai, R.E. Danell. Influence of discontinuities on presplitting effectiveness, Rock fragmentation by blasting – Fragblast5. B. Mohanty, Montreal, Canada, (1996). DOI : https://doi.org/10.1080/13855149709408388
[20] P.N. Worsey, S. Qu. Effect of joint separation and filling on pre-split blasting. The 3rd Mini Symposium on Explosives and Blasting Research. pp. 26-40 (1987).
[21] B.S. Whittaker, R.N. Singh, G. Sun, Fracture Mechanics Applied to Rock Fragmentation due to blasting. Rock Fracture Mechanics – Principles, Design and Applications, Elsevier Science Ltd. 71 (13), 443-479 (1992).
[22] P.K. Singh, M.P. Roy, R.K. Paswan, Md. Sarim. Suraj Kumar, Rakesh Ranjan Jha, Rock fragmentation control in opencast blasting. J. Rock Mech. Geotech. 8, 225-237 (2016). DOI: https://doi.org/10.1016/j.jrmge.2015.10.005
[23] K. Nur Lyana, Z. Hareyani, A. Kamar Shah, Mohd, M.H. Hazizan, Effect of Geological Condition on Degree of Fragmentation in a Simpang Pulai Marble Quarry, 5th International Conference on Recent Advances in Materials, Minerals and Environment (RAMM) & 2nd International Postgraduate Conference on Materials, Mineral and Polymer (MAMIP), 4-6 August (2015).
[24] J.M. Belland, Structure as a Control in Rock Fragmentation Coal Lake Iron Ore Deposited. The Canadian Mining and Metallurgical Bulletin. 59 (647), 323-328 (1968).
[25] K. Talhi, B. Bensaker, Design of a model blasting system to measure peak p-wave stress, Soil Dyn. Earthq. Eng. 23 (6), 513-519 (2003). DOI: http://dx.doi.org/10.1016/S0267-7261(03)00018-6
[26] P.F. Gnirk, E.D. Fleider, On the correlation between explosive crater formation and rock properties. In Proceedings of the 9th Symposium on Rock Mechanics, AIME. New York. 321-45 (1968).
[27] D .P. Singh, Y.V. Apparao, S.S. Saluja, A laboratory study on effect of joints on rock fragmentation. American Rock Mechanics Association, The 21st U.S. Symposium of Rock Mechanics (USRMS), 27-30 May (1980).
[28] Zhi-qiang.Yin, Hu. Zu-xiang, Ze-di Wei, Guang-ming Zhao, Ma Hai-feng, Zhuo Zhang, Rui-min Feng, Assessment of Blasting-Induced Ground Vibration in an Open-Pit Mine under Different Rock Properties. Adv. Civ. Eng. 10 (2018). DOI: https://doi.org/10.1155/2018/4603687
[29] J. Henrych. The dynamics of explosion and its use. Earthq Eng Struct Dyn. Elsevier, New York (1979). DOI: https://doi.org/10.1002/eqe.4290080309
[30] G .W. Ma, X.M. An, Numerical simulation of blasting-induced rock fractures. Int. J. Rock Mech. Min. Sci. 45 (6), 966-975 (2008). DOI: http://dx.doi.org/10.1016/j.ijrmms.2007.12.002
[31] J.C. Li, W. MaG., Analysis of blastwave interaction with a rock joint. Rock Mech Rock Eng. 43 (6), 777-787 (2010). DOI: https://doi.org/10.1007/s00603-009-0062-0
[32] J.C. Li, H.B. Li, J. Zhao, An improved equivalent viscoelastic medium method for wave propagation across layered rock masses. Int. J. Rock Mech. Min. Sci. (2015). DOI: http://dx.doi.org/10.1016/j.ijrmms.2014.10.008
[33] P.C. Vinh, T.T. Tuan, D.X. Tung, N.T. Kieu, Reflection and transmission of SH waves at a very rough interface and its band gaps. J. Sound Vib. 411-422 (2017). DOI: https://doi.org/10.1016/j.jsv.2017.08.046
Go to article

Authors and Affiliations

Sri Chandrahas
1 2
ORCID: ORCID
Bhanwar Singh Choudhary
1
ORCID: ORCID
N.S.R. Krishna Prasad
2
ORCID: ORCID
Venkataramayya Musunuri
2
ORCID: ORCID
K.K. Rao
3
ORCID: ORCID

  1. Department of Mining Engineering, IIT(ISM) Dhanbad, India
  2. Department of Mining Engineering, Malla Reddy Engineering College, Hyderabad, India
  3. Manager, UCIL Mine, Kadapa , India

This page uses 'cookies'. Learn more