Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Turbine blades have complex geometries with free form surface. Blades have different thickness at the trailing and leading edges as well

as sharp bends at the chord-tip shroud junction and sharp fins at the tip shroud. In investment casting of blades, shrinkage at the tip-shroud

and cord junction is a common casting problem. Because of high temperature applications, grain structure is also critical in these castings

in order to avoid creep. The aim of this work is to evaluate the effect of different process parameters, such as, shell thickness, insulation

and casting temperature on shrinkage porosity and grain size. The test geometry used in this study was a thin-walled air-foil structure

which is representative of a typical hot-gas-path rotating turbine component. It was observed that, in thin sections, increased shell

thickness helps to increase the feeding distance and thus avoid interdendritic shrinkage. It was also observed that grain size is not

significantly affected by shell thickness in thin sections. Slower cooling rate due to the added insulation and steeper thermal gradient at

metal mold interface induced by the thicker shell not only helps to avoid shrinkage porosity but also increases fill-ability in thinner

sections.

Go to article

Authors and Affiliations

M. Raza
M. Irwin
B. Fagerström
Download PDF Download RIS Download Bibtex

Abstract

Castability of thin-walled castings is sensitive to variation in casting parameters. The variation in casting parameters can lead to undesired casting conditions which result in defect formation. Variation in rejection rate due to casting defect from one batch to other is common problem in foundries and the cause of this variation usually remain unknown due to complexity of the process. In this work, variation in casting parameters resulting from human involvement in the process is investigated. Casting practices of different groups of casting operators were evaluated and resulting variations in casting parameters were discussed. The effect of these variations was evaluated by comparing the rejection statistics for each group. In order to minimize process variation, optimized casting practices were implemented by developing specific process instructions for the operators. The significance of variation in casting parameters in terms of their impact on foundry rejections was evaluated by comparing the number of rejected components before and after implementation of optimized casting practices. It was concluded that variation in casting parameters due to variation in casting practices of different groups has significant impact on casting quality. Variation in mould temperature, melt temperature and pouring rate due to variation in handling time and practice resulted in varying quality of component from one batch to other. By implementing the optimized casting instruction, both quality and process reliability were improved significantly.

Go to article

Authors and Affiliations

M. Raza
P. Silva
M. Irwin
B. Fagerström
A.E.W. Jarfors

This page uses 'cookies'. Learn more