Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 14
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Most of the formulations regarding the characteristics of a shell and tube heat exchanger have a common assumption; namely that the baffle plates are equidistant. This assumption fails to cater the real world scenario for defective baffles as the alteration in a shell and tube heat exchanger invalidates the equidistant baffle spacing of the plates. In this regard, a small six baffles heat exchanger was modeled in the computational fluid dynamics software package and studied by removing each baffle plate one at a time. Effect of removing each baffle plate on the temperature, pressure, heat transfer coefficient, and total heat transfer rate was recorded. It was observed that variation in the pressure drop for the same number of baffle plates varies along the axial order of the plates. The change in pressure drop due to the removal of the baffle plate near the inlet and the outlet was lowest and reaches a maximum in the axial center. It was also found that the plates below the radial center contribute higher towards the overall heat transfer as compared to those above.

Go to article

Authors and Affiliations

Abdullah Aziz
Shafique Rehman
Download PDF Download RIS Download Bibtex

Abstract

Stemming plugs are one of the widely used accessory in surface mining operations. Stemming plugs assist conventional stemming material in gas retention and help in better fragmentation and explosive utilization. Effective use of the stemming plugs results in economic benefits and enhance the efficacy of the project. Economic and productive viability of stemming plugs have been conducted in depth by different researchers. Addition of stemming plugs to a new system requires ergonomic challenges for operators conducting drilling and blasting operation. Induction of a newer product in already established system is subject to overall positive feedback. This work investigates ergonomics of three different stemming plugs introduced to a limestone quarry in Pakistan. The stemming plugs were evaluated based on extra time needed, workers feedback, failures during operation, recovery time after failure and number of extra equipment required to carry out the operation. Points based matrix was established with likeliness of each plug and based on overall scores stemming plug 1 was most acceptable followed by stemming plug 3. Stemming plug 2 was disliked by operation and did not reach the level of acceptability of operators. This work will help stemming plug making industry in adapting to best practices by incorporating ergonomics of plugs in designing. Literature shows no previous work on ergonomics of stemming plugs.

Go to article

Authors and Affiliations

Atta Ur Rehman
Muhammad Zaka Emad
Muhammad Usman Khan
Download PDF Download RIS Download Bibtex

Abstract

The present study was aimed to evaluate the growth performance and immune response of three genetic lines of Japanese quails. These lines i.e., selected for 4-week body-weight group (WBS), selected for egg number (EBS), and random-bred control (RBC), were selected for three consecutive generations from a base population of 1125 quails. In total, 2700 four-week-old quails from three selected groups were slaughtered in total of four generations (G0 to G3). Effects of selection and generations as well as their interactions were assessed for growth performance and immune response by applying a two-way analysis of variance. Significant means were compared with Duncan’s Multiple Range Test. The statistical analysis showed a significant effect of selection and generations on most of the growth and immune response parameters. WBS in G3 presented significantly higher values of body weight, weight gain, and FCR than RBC and EBS. FCR was better in WBS during G3 than those of EBS and RBC. However, Livability% was highest in RBC while the lowest was noted in G3 of WBS line. Thymus% and spleen% were higher in EBS as compared to RBC and WBS. RBC presented a better B/S ratio and ND titer than those of EBS and WBS. The decreasing trend of ND titer in both lines of WBS and EBS as compared to RBC suggested a decrease in New Castle disease resistance in progressive generations of selection. It was concluded that selection for body weight and egg number has a positive impact on respective traits but negatively affects the immunity in later generations.
Go to article

Bibliography


Ahmad S, Mehmood S, Javed K, Mahmud A, Usman M, Rehman A, Ishaq HM, Hussain J, Ghayas A (2018) Different selection strategies for the improvement of the growth performance and carcass traits of Japanese quails. Braz J Poult Sci 20: 497-506.

Akram M, Hussain J, Sahota AW, Iqbal A, Sultan A (2012) Genetic gain in 4-week body weight through mass selection in 4 close-bred stocks of Japanese quail. Book of Abstracts. 32nd Congress of Zoology, Lahore, Pakistan, pp 140.

Anthony NB, Nestor KE, Bacon WL (1986) Growth curves of Japanese quail as modified by divergent selection for 4 - week body weight. Poult Sci 65: 1825-1833.

Bayyari GR, Huff WE, Rath NC, Balog JM, Newberry LA, Villines JD, Skeeles JK, Anthony NB, Nestor KE (1997) Effect of the genetic selection of turkeys for increased body weight and egg production on immune and physiological responses. Poult Sci 76: 289-296.

Bhatti BM, Sahota AW (1994) Growth performance and carcass quality of different crosses of chickens. Pak Vet J 14: 250-253.

Caron N, Minvielle F, Desmarais M, Poste LM (1990) Mass Selection for 45-Day Body Weight in Japanese Quail: Selection Response, Carcass Composition, Cooking Properties, and Sensory Characteristics. Poult Sci 69: 1037-1045.

Cheema MA, Qureshi MA, Havenstein GB (2003) A comparison of the immune response of a 2001 commercial broiler with a 1957 random-bred broiler strain when fed representative 1957 and 2001 broiler diets. Poult Sci 82: 1519-1529.

Durmus I, Alkan S, Narinc D, Karabag K, Karslı T (2017) Effects of mass selection on egg production on some reproductive traits in Japanese quail. Eur Poult Sci 81: 1-9.

El-Bayomi KM, El-Tarabany MS, Nasr MA, Roushdy EM (2014) Effect of divergent selection for growth on carcass traits in Japanese quails. Zag Vet J 42: 51-56.

El-Nagar SH, Sharaf MM, Mahmoud S, Basha HA (2016) Effect of selection of Japanese quails for rapid growth on immune function. Alex J Vet Sci 49: 85-90.

Faisal BA, Abdel-Fattah SA, El-Hommosany YM, Abdel-Gawad NM, Ali MFM (2008) Immunocompetence, hepatic heat shock protein 70 and physiological responses to feed restriction and heat stress in two body weight lines of Japanese quail. Int J Poult Sci 7: 174-183.

Ghayas A, Hussain J, Mahmud A, Javed K, Rehman A, Ahmad S, Mehmood S, Usman M, Ishaq HM (2017) Productive performance, egg quality, and hatching traits of Japanese quail reared under different levels of glycerin. Poult Sci 96: 2226-2232.

Havenstein GB, Ferket PR, Scheideler SE, Larson BT (1994) Growth, livability, and feed conversion of 1957 vs 1991 broilers when fed “typical” 1957 and 1991 broiler diets. Poult Sci 73: 1785-1794.

Hussain J (2014) Response to Selection for three week body weight in Japanese quail for three generations. Ph.D. Thesis. Department of Poultry Production, University of Veterinary and Animal Sciences, Lahore, Pakistan pp 13.

Hussain J, Akram M, Sahota AW, Javed K, Ahmad HA, Mehmood S, Ahmad S, Sulaman R, Rabbani I, Jatoi AS (2013) Selection for higher three-week body weight in Japanese quail: 1. Effect on growth performance. J Anim Plant Sci 23: 1496-1500.

Hussain J, Akram M, Sahota AW, Javed K, Ahmad HA, Mehmood S, Jatoi AS, Ahmad S (2014) Selection for higher three weeks body weight in Japanese quail: 2. Estimation of genetic parameters. J Anim Plant Sci 24: 869-873.

Jatoi AS, Sahota AW, Akram M, Javed K, Jaspal MH, Hussain J, Mirani AH, Mehmood S (2013) Effect of different body weight categories on the productive performance of four closebred flocks of Japanese quails (Coturnix coturnix japonica). J Anim Plant Sci 23: 7-13.

Kankova Z, Drozdova A, Klobetzova Z, Lichovnikova M, Zeman M (2019) Development and reactivity of the immune system of Japanese quail lines divergently selected for the shape of the growth curve. Br Poult Sci 60: 700-707.

Kapczynski DR, Afonso CL, Miller PJ (2013) Immune responses of poultry to Newcastle disease virus. Dev Comp Immunol 41: 447-453.

Khaldari M, Pakdel A, Yegane M, Javaremi AN, Berg P (2010) Response to selection and genetic parameters of body and carcass weights in Japanese quail selected for 4- week body weight. Poult Sci 89: 1834-1841.

Koenen ME, Boonstra-Blom AG, Jeurissen SH (2002) Immunological differences between layer and broiler-type chickens. Vet Immun Im-munopathol 89: 47-56.

Li Z, Nestor KE, Saif YM, Anderson JW, Patterson RA (2001) Effect of selection for increased body weight in turkeys on lymphoid organ weights, phagocytosis, and antibody responses to fowl cholera and Newcastle disease-inactivated vaccines. Poult Sci 80: 689-694.

Mohammed MS, Gupta BR, Narasimha RG, Rajasekhar RA (2006) Genetic evaluation of the performance of Japanese quails. Indian J Poult Sci 41: 129-133.

Narinç D, Aksoy T (2012) Effects of mass selection based on phenotype and early feed restriction on the performance and carcass characteris-tics in Japanese quails. Kafkas Uni Vet Fak Derg 18: 425-430.

Nestor K, Bacon WL (1982) Divergent selection for body weight and yolk precursor in Cotournix cotournix Japonica. 3. Correlated responses in mortality, reproduction traits and adult body weight. Poult Sci 61: 2137-2142.

Parks JR (1971) Phenomenology of animal growth. NC State Univ, Raleigh.

Paxton H, Anthony NB, Corr SA, Hutchison JR (2010) The effects of selective breeding on the architectural properties of the pelvic limb in broiler chickens: a comparative study across modern and ancestral populations. J Anat 217: 153-166.

Paxton H, Daley MA, Corr SA, Hutchinson JR (2013) The gait dynamics of the modern broiler chicken: a cautionary tale of selective breed-ing. J Exp Biol 216: 3237-3248.

Pym RAE (1990) Nutritional genetics. In: Poultry breeding and genetics. Crawford RD, Elsevier Amsterdam, pp 209-237.

Rauw WM (2012) Immune response from a resource allocation perspective. Front Genet 3: 267.

Van der Most PJ, De Jong B, Parmentier HK, Verhulst S (2011) Trade-off between growth and immune function: a meta analysis of selection experiments. Funct Ecol 25: 74-80.
Go to article

Authors and Affiliations

A. Rehman
1
J. Hussain
1
A. Mahmud
2
K. Javed
3
A. Ghayas
1
S. Ahmad
1

  1. Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan, 54000
  2. Department of Poultry Production, Faculty of Animal Production and Technology,University of Veterinary and Animal Sciences, Lahore, Pakistan, 54000
  3. Department of Livestock Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan, 54000
Download PDF Download RIS Download Bibtex

Abstract

The synchronisation of a complex chaotic network of permanent magnet synchronous motor systems has increasing practical importance in the field of electrical engineering. This article presents the control design method for the hybrid synchronization and parameter estimation of ring-connected complex chaotic network of permanent magnet synchronous motor systems. The design of the desired control law is a challenging task for control engineers due to parametric uncertainties and chaotic responses to some specific parameter values. Controllers are designed based on the adaptive integral sliding mode control to ensure hybrid synchronization and estimation of uncertain terms. To apply the adaptive ISMC, firstly the error system is converted to a unique system consisting of a nominal part along with the unknown terms which are computed adaptively. The stabilizing controller incorporating nominal control and compensator control is designed for the error system. The compensator controller, as well as the adopted laws, are designed to get the first derivative of the Lyapunov equation strictly negative. To give an illustration, the proposed technique is applied to 4-coupled motor systems yielding the convergence of error dynamics to zero, estimation of uncertain parameters, and hybrid synchronization of system states. The usefulness of the proposed method has also been tested through computer simulations and found to be valid.
Go to article

Bibliography

  1.  A.C. Fowler, J.D. Gibbon, and M.J. McGuinness, “The complex Lorenz equations”, Physica D 4, 139–163 (1982).
  2.  P. Liu, H. Song, and X. Li, “Observe-based projective synchronization of chaotic complex modified Van Der Pol-Duffing oscillator with application to secure communication”, J. Comput. Nonlinear Dyn. 10, 051015 (2015).
  3.  G.M. Mahmoud and A.A. Shaban, “On periodic solutions of parametrically excited complex non-linear dynamical systems”, Physica A 278(3‒4), 390–404 (2000).
  4.  G.M. Mahmoud and A.A. Shaban, “Periodic attractors of complex damped non-linear systems”, Int. J. Non-Linear Mech. 35(2), 309–323 (2000).
  5.  G.M. Mahmoud, “Periodic solutions of strongly non-linear Mathieu oscillators”, Int. J. Non-Linear Mech. 32(6), 1177–1185 (1997).
  6.  G.M. Mahmoud and E.E. Mahmoud, “Lag synchronization of hyperchaotic complex nonlinear systems”, Nonlinear Dynamics 67, 1613– 1622 (2012).
  7.  P. Liu and S. Liu, “Anti-synchronization between different chaotic complex systems”, Phys. Scr. 83, 065006 (2011).
  8.  S. Liu and P. Liu, “Adaptive anti-synchronization of chaotic complex nonlinear systems with unknown parameters”, Nonlinear Anal.-Real World Appl. 12, 3046–3055 (2011).
  9.  N. Siddique and F.U. Rehman, “Parameter Identification and Hybrid Synchronization in an Array of Coupled Chaotic Systems with Ring Connection: An Adaptive Integral Sliding Mode Approach”, Math. Probl. Eng. 2018, 6581493 (2018).
  10.  G.M. Mahmoud, E.E. Mahmoud, and A.A. Arafa, “Projective synchronization for coupled partially linear complex-variable systems with known parameters”, Math. Meth. Appl. Sci. 40(4), 1214–1222 (2017).
  11.  D.W. Qian, Y.F Xi, and S.W. Tong, “Chaos synchronization of uncertain coronary artery systems through sliding mode”, Bull. Pol. Acad. Sci. Tech. Sci. 67(3), 455–462 (2019).
  12.  G.M. Mahmoud, E.E. Mahmoud, and A.A. Arafa, “On modified time delay hyperchaotic complex Lü system”, Nonlinear Dynamics 80(1‒2), 855–869 (2015).
  13.  G.M. Mahmoud, T. Bountis, M.A. Al-Kashif, and A.A. Shaban, “Dynamical properties and synchronization of complex nonlinear equations for detuned lasers”, Dynam. Syst. 24(1), 63–79 (2009).
  14.  J.-B. Hu, H. Wei, Y.-F. Feng, and X.-B. Yang, “Synchronization of fractional chaotic complex networks with delay”, Kybernetika 55, 203–215 (2019).
  15.  N.A. Almohammadi, E.O. Alzahrani, and M.M. El-Dessoky, “Combined modified function projective synchronization of different systems through adaptive control”, Arch. Control Sci. 29, 133–146 (2019).
  16.  H. Su, Z. Rong, M.Z.Q. Chen, X. Wang, G. Chen and H. Wang, “Decentralized adaptive pinning control for cluster synchronization of complex dynamical networks”, IEEE Trans. Cybern. 43, 2182–2195 (2013).
  17.  A. Khan and U. Nigar, “Sliding mode disturbance observer control based on adaptive hybrid projective compound combination synchronization in fractional-order chaotic systems”, Int. J. Control Autom. Syst. 31, 885–899 (2020).
  18.  G.M. Mahmoud, E.A. Mansour, and T.M. Abed-Elhameed, “On fractional-order hyperchaotic complex systems and their generalized function projective combination synchronization”, Optik 130, 398–406 (2017).
  19.  S. Wang, X. Wang, X. Wang, and Y. Zhou, “Adaptive generalized combination complex synchronization of uncertain real and complex nonlinear systems”, AIP Adv. 6, 045011 (2016).
  20.  J. Zhou, A. Oteafy, and N. Smaoui, “Adaptive synchronization of an uncertain complex dynamical network”, IEEE Trans. Autom. Control 51, 652–656 (2006).
  21.  X. Chen, J. Qiu, J. Cao, and H. He, “Hybrid synchronization behavior in an array of coupled chaotic systems with ring connection”, Neurocomputing 173, 1299–1309 (2016).
  22.  F. Zhang, C. Mu, X. Wang, I. Ahmed, and Y. Shu, “Solution bounds of a new complex PMSM system”, Nonlinear Dynamics 74, 1041–1051 (2013).
  23.  Y.Wang, Y. Fan, Q.Wang, and Y. Zhang, “Stabilization and synchronization of complex dynamical networks with different dynamics of nodes via decentralized controllers”, IEEE Trans. Circuits Syst. I-Regul. Pap. 59, 1786–1795 (2012).
  24.  L. Zarour, K. Abed, M. Hacil, and A Borni, “Control and optimisation of photovoltaic water pumping system using sliding mode”, Bull. Pol. Acad. Sci. Tech. Sci. 67(3), 605–611 (2019).
  25.  N. Siddique, F.U. Rehman, M. Wasif, W. Abbasi, and Q. Khan, “Parameter Estimation and Synchronization of Vaidyanathan Hyperjerk Hyper-Chaotic System via Integral Sliding Mode Control”, 2018 AEIT Conference IEEE, 1–5 (2018).
  26.  K. Urbanski, “A new sensorless speed control structure for PMSM using reference model”, Bull. Pol. Acad. Sci. Tech. Sci. 65(4), 489–496 (2017).
  27.  X. Sun, Z. Shi, Y. Zhou, W. Zebin, S. Wang,B. Su, L. Chen, and K. Li, “Digital control system design for bearingless permanent magnet synchronous motors”, Bull. Pol. Acad. Sci. Tech. Sci. 66(5), 687–698 (2018).
  28.  T. Tarczewski, M. Skiwski, L.J. Niewiara, and L.M. Grzesiak, “High-performance PMSM servo-drive with constrained state feedback position controller”, Bull. Pol. Acad. Sci. Tech. Sci. 66(1), 49–58 (2018).
  29.  W. Xing-Yuan and Z. Hao, “Backstepping-based lag synchronization of a complex permanent magnet synchronous motor system”, Chin. Phys. B 22, 048902 (2013).
  30.  Z. Zhang, Z. Li, M.P. Kazmierkowski, J. Rodríguez, and R. Kennel, “Robust Predictive Control of Three-Level NPC Back-to-Back Power Converter PMSG Wind Turbine Systems With Revised Predictions”, IEEE Trans. Power Electron. 33(11), 9588– 9598 (2018).
  31.  N. Hoffmann, F.W. Fuchs, M.P. Kazmierkowski, and D. Schröder, “Digital current control in a rotating reference frame – Part I: System modeling and the discrete time-domain current controller with improved decoupling capabilities”, IEEE Trans. Power Electron. 31(7), 5290–5305 (2016).
  32.  H. Won, Y.-K. Hong, M. Choi, H.-s. Yoon, S. Li and T. Haskew, “Novel Efficiency-shifting Radial-Axial Hybrid Interior Permanent Magnet Sychronous Motor for Electric Vehicle”, 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, USA, 2020, pp. 47–52.
  33.  C. Jiang and S. Liu, “Synchronization and Antisynchronization of-Coupled Complex Permanent Magnet Synchronous Motor Systems with Ring Connection”, Complexity 4, 1–15 (2017).
  34.  M. Karabacak and H.I. Eskikurt, “Speed and current regulation of a permanent magnet synchronous motor via nonlinear and adaptive backstepping control”, Math. Comput. Model. 53, 2015–2030 (2011).
Go to article

Authors and Affiliations

Nazam Siddique
1
ORCID: ORCID
Fazal U. Rehman
1

  1. Capital University of Science and Technology, Islamabad Expressway, Kahuta Road, Zone-V Islamabad, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

Plastic obtained from the discarded computers, televisions, refrigerators, and other electronic devices is termed as e-plastic waste. E-plastic waste is non-biodegradable waste. This paper focuses to investigate the replacement of fine aggregate with plastic aggregate obtained from e-plastic. The paper presents a detailed comparison of concrete properties (i.e.: compressive strength, tensile strength, flexural strength, density and workability) for normal concrete and concrete containing e-plastic fine aggregates. The testing was conducted according to the ASTM standards. 28-day Compressive, Flexural and Split tensile strengths were determined. In addition to the effect of e-plastic fine aggregate, silica fume is added as an admixture to find the effect on strengths. Authors have performed a compressive, flexural and tensile test of concrete mix with various percentages of e-plastic aggregates (i.e., 0, 5, 10, 15 and 20%) and silica fume (i.e.: 0, 5 and 10%) and concrete densities are also considered. It has been concluded that an increase in the e-plastic fine aggregate results in reduction in densities, compressive, flexural and tensile strength values. However, when we add silica fume to the concrete mixture it leads to strength values similar to the control mixture. The optimum obtained concrete blend contained 5% e-plastic fine aggregates and 10% silica fume. The addition of silica fume in concrete mixtures increases the 28-day compressive, flexural and tensile strengths. Moreover, the density of concrete decreases with the increase in the e-plastic aggregates.

Go to article

Authors and Affiliations

Adil Farooq
Muneeb Abid Malik
Tauqeer Tariq
Mamoon Riaz
Waqas Haroon
Awais Malik
Mujeeb Ur Rehman
Download PDF Download RIS Download Bibtex

Abstract

Trypanosomiasis is one of the severe pathogenic infections, caused by several Trypanosoma species, affecting both animals and humans, causing substantial economic losses and severe illness. The objective of this study was to determine the molecular diagnosis and the risk factors associated with trypanosomiasis in District Jhang, Punjab, Pakistan. For this purpose, blood samples were randomly collected from 200 horses. A predesigned questionnaire was used to collect data on risk factors before the sample collection. The microscopy examination through Giemsa staining, formol gel test and PCR techniques were used to find the prevalence. The prevalence was recorded as 22.5% with microscopy examination, 21% through formol gel test and 15.5% with PCR based results. Analysis of risk factors associated with Trypanosoma brucei evansi occurrence was carried out using Chi-square test. It showed the prevalence of Trypanosoma brucei evansi was significantly (p<0.05) associated with sex, age, rearing purpose and body condition whereas non-significantly (p>0.05) with insects control practices. This study supports the idea that PCR is a sensitive, robust and more reliable technique to diagnose trypanosomiasis. It was concluded that Trypanosoma brucei evansi is widely prevalent in Jhang (Pakistan), highlighting a dire need to develop control strategies and education programmes to control this disease in developing countries.
Go to article

Authors and Affiliations

J. Zahoor
1
M. Kashif
1
A. Nasir
1
M. Bakhsh
1
M.F. Qamar
2
A. Sikandar
3
A. Rehman
2

  1. Department of Clinical Medicine, College of Veterinary and Animal Sciences, Jhang, Pakistan
  2. Department of Pathobiology, College of Veterinary and Animal Sciences, Jhang Pakistan
  3. Department of Basic Sciences, College of Veterinary and Animal Sciences, Jhang Pakistan
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the control design framework for the hybrid synchronization (HS) and parameter identification of the 3-Cell Cellular Neural Network. The cellular neural network (CNN) of this kind has increasing practical importance but due to its strong chaotic behavior and the presence of uncertain parameters make it difficult to design a smooth control framework. Sliding mode control (SMC) is very helpful for this kind of environment where the systems are nonlinear and have uncertain parameters and bounded disturbances. However, conventional SMC offers a dangerous chattering phenomenon, which is not acceptable in this scenario. To get chattering-free control, smooth higher-order SMC formulated on the smooth super twisting algorithm (SSTA) is proposed in this article. The stability of the sliding surface is ensured by the Lyapunov stability theory. The convergence of the error system to zero yields hybrid synchronization and the unknown parameters are computed adaptively. Finally, the results of the proposed control technique are compared with the adaptive integral sliding mode control (AISMC). Numerical simulation results validate the performance of the proposed algorithm.
Go to article

Authors and Affiliations

Nazam Siddique
1
ORCID: ORCID
Fazal ur Rehman
2
Uzair Raoof
3
Shahid Iqbal
1
Muhammad Rashad
3

  1. University of Gujrat, Gujrat, Pakistan
  2. Capital University of Science and Technology, Islamabad, Pakistan
  3. University of Lahore, Lahore, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

Babesiosis is a parasitic disease caused by intraerythrocytic parasites of the genus Babesia, which infect both wild and domestic animals. Merozoite surface antigens (MSAs) have been identified as efficient immunogens in Babesia-infected animals. MSAs play a key role in the invasion process and have been proposed as potential targets for vaccine development. Epitope-based vaccines offer several advantages over whole protein vaccines as the immunogenic proteins are small and can induce both Th1 and Th2 immune responses, which are desirable for protection. However, the MSA, particularly gp45, is polymorphic in Babesia bigemina, posing a challenge to vaccine development. The purpose of this study was to develop a recombinant gpME (gp45-multi-epitope) for a vaccine against Babesia bigemina. B-cell, T-cell, and HLA epitope predictions were used to synthesize the gpME sequence from the consensus sequence of gp45. The gpME sequence was synthesized and cloned in the pET28α vector through the commercial biotechnology company to get pET28-gpME. The plasmid cloned with the gpME sequence comprising 1068 bp was expressed in a bacterial expression system. A band of 39 kDa of rec-gpME was obtained via SDS-PAGE and Western blotting. Rec-gpME @200ng was injected in calves 3 times at 2 weeks interval. The humoral response was evaluated through the indirect ELISA method. The ELISA with rec-gp45 protein showed a significant value of optical density. The recombinant protein containing multiple epitopes from the MSA gp45 may represent a promising candidate for a vaccine against Babesia bigemina.
Go to article

Bibliography

  1. Adu-Bobie J, Capecchi B, Serruto D, Rappuoli R, Pizza M (2003) Two years into reverse vaccinology. Vaccine 21: 605-610.
  2. Bock RE, De Vos AJ (2001) Immunity following use of Australian tick fever vaccine: a review of the evidence. Aust Vet J 79: 832-839.
  3. Callow LL, Dalgliesh RJ, De Vos AJ (1997) Development of effective living vaccines against Bovine Babesiosis – the longest field trial? Int J Parasitol 27: 747-767.
  4. Carcy B, Précigout E, Schetters T, Gorenflot A (2006) Genetic basis for GPI-anchor merozoite surface antigen polymorphism of Babesia and resulting antigenic diversity. Vet Parasitol 138: 33-49.
  5. Caro-Gomez E, Gazi M, Goez Y, Valbuena G (2014) Discovery of novel cross-protective Rickettsia prowazekii T-cell antigens using a combined reverse vaccinology and in vivo screening approach. Vaccine 32: 4968-4976.
  6. Çiloğlu A, Abdullah IN, Yildirim A, Önder Z, Düzlü Ö (2018) Molecular characterization and expression of the apical membrane antigen-1 from in vivo and in vitro isolates of Babesia bigemina Kayseri/Turkey strain. Ankara Univ Vet Fak Derg 65: 239-246.
  7. de Castro JJ (1997) Sustainable tick and tickborne disease control in livestock improvement in developing countries. Vet Parasitol 71: 77-97.
  8. Debierre-Grockiego F, Schwarz RT (2010) Immunological reactions in response to apicomplexan glycosylphosphatidylinositols. Glycobiology 20: 801-811.
  9. Debierre-Grockiego F, Smith TK, Delbecq S, Ducournau C, Lantier L, Schmidt J, Brès V, Dimier-Poisson I, Schwarz RT, Cornillot E (2019) Babesia divergens glycosylphosphatidylinositols modulate blood coagulation and induce Th2-biased cytokine profiles in antigen presenting cells. Biochimie 167: 135-144.
  10. Delbecq S, Hadj-Kaddour K, Randazzo S, Kleuskens J, Schetters T, Gorenflot A, Précigout E (2006) Hydrophobic moeties in recombinant proteins are crucial to generate efficient saponin-based vaccine against Apicomplexan Babesia divergens. Vaccine 24: 613-621.
  11. Djokic V, Akoolo L, Parveen N (2018) Babesia microti infection changes host spleen architecture and is cleared by a Th1 immune response. Front Microbiol 9:85
  12. Durrani A, Kamal N (2008) Identification of ticks and detection of blood protozoa in Friesian cattle by polymerase chain reaction test and estimation of blood parameters in district Kasur, Pakistan. Trop Anim Health Prod 40: 441-447.
  13. Echaide IE, De Echaide ST, Guglielmone AD (1993) Live and soluble antigens for cattle protection to Babesia bigemina. Vet Parasitol 51: 35-40.
  14. Esmaeilnejad B, Tavassoli M, Asri-Rezaei S, Dalir-Naghadeh B, Mardani K, Golabi M, Arjmand J, Kazemnia A, Jalilzadeh G (2015) Determination of prevalence and risk factors of infection with Babesia ovis in small ruminants from West Azerbaijan Province, Iran by polymerase chain reaction. J Arthropod Borne Dis 9: 246-252.
  15. Ezediuno LO, Onile OS, Oladipo EK, Majolagbe ON, Jimah EM, Senbadejo TY (2021) Designing multi-epitope subunit vaccine for ocular trachoma infection using Chlamydia trachomatis polymorphic membrane proteins G. Inform Med Unlocked 26: 100764.
  16. Fisher TG, McElwain TF, Palmer GH (2001) Molecular basis for variable expression of merozoite surface antigen gp45 among American isolates of Babesia bigemina. Infect Immun 69: 3782-3790.
  17. Gaafar B, Ali SA, Abd-Elrahman KA, Almofti YA (2019) Immunoinformatics approach for multiepitope vaccine prediction from H, M, F, and N proteins of Peste des Petits ruminants virus. J Immunol Res 2019. 6124030
  18. Gomara MJ, Haro I (2007) Synthetic peptides for the immunodiagnosis of human diseases. Curr Med Chem 14: 531-546.
  19. Hajissa K, Zakaria R, Suppian R, Mohamed Z (2019) Epitope-based vaccine as a universal vaccination strategy against Toxoplasma gondii infection: A mini-review. J Adv Vet Anim Res 6: 174-182.
  20. Jabbar A, Abbas T, Sandhu Z, Saddiqi HA, Qamar MF, Gasser RB (2015) Tick-borne diseases of bovines in Pakistan: major scope for future research and improved control. Parasit Vectors 8:.283
  21. Jorgensen WK, De Vos AJ, Dalgliesh RJ (1989) Comparison of immunogenicity and virulence between Babesia bigemina parasites from continuous culture and from a splenectomised calf. Aust Vet J 66: 371-372.
  22. Kalita J, Padhi AK, Tripathi T (2020a) Designing a vaccine for fascioliasis using immunogenic 24 kDa mu-class glutathione s-transferase. Infect Genet Evol 83: 104352.
  23. Kalita P, Padhi AK, Zhang KY, Tripathi T (2020b) Design of a peptide-based subunit vaccine against novel coronavirus SARS-CoV-2. Microb Pathog 145: 104236.
  24. Kar PP, Srivastava A (2018) Immuno-informatics analysis to identify novel vaccine candidates and design of a multi-epitope based vaccine candidate against Theileria parasites. Front Immunol 9: 2213.
  25. Karim S, Budachetri K, Mukherjee N, Williams J, Kausar A, Hassan MJ, Adamson S, Dowd SE, Apanskevich D, Arijo A, Sindhu ZU (2017) A study of ticks and tick-borne livestock pathogens in Pakistan. PLOS Negl Trop Dis 11: e0005681.
  26. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T ( 2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647-1649.
  27. Khatoon N, Ojha R, Mishra A, Prajapati VK (2018) Examination of antigenic proteins of Trypanosoma cruzi to fabricate an epitope-based subunit vaccine by exploiting epitope mapping mechanism. Vaccine 36: 6290-6300.
  28. Klafke G, Webster A, Agnol BD, Pradel E, Silva J, de La Canal LH, Becker M, Osório MF, Mansson M, Barreto R, Scheffer R (2017) Multiple resistance to acaricides in field populations of Rhipicephalus microplus from Rio Grande do Sul state, Southern Brazil. Ticks Tick Borne Dis 8: 73-80.
  29. Kumar P, Lata S, Shankar UN, Akif M (2021) Immunoinformatics based designing of a multi- epitope chimeric vaccine from multi-domain outer surface antigens of Leptospira. Front Immunol 12: 735373.
  30. Lew-Tabor AE, Valle MR (2016) A review of reverse vaccinology approaches for the development of vaccines against ticks and tick borne diseases. Ticks Tick Borne Dis 7: 573-585.
  31. List C, Qi W, Maag E, Gottstein B, Müller N, Felger I (2010) Serodiagnosis of Echinococcus spp. infection: explorative selection of diagnostic antigens by peptide microarray. PLOS Negl Trop Dis 4: e771.
  32. Maiorano AM, Giglioti R, Oliveira MC, Oliveira HN, Cyrillo JN, Mercadante ME, Silva JA (2018) Resistance to the tick Rhipicephalus microplus and Babesia bovis infection levels in beef heifers raised in an endemic area of Sao Paulo state, Brazil Anim Prod Sci 59: 938-944.
  33. Mangold AJ, Vanzini VR, Echaide IE, De Echaide ST, Volpogni MM, Guglielmone AA (1996) Viability after thawing and dilution of simultaneously cryopreserved vaccinal Babesia bovis and Babesia bigemina strains cultured in vitro. Vet Parasitol 61: 345- 348.
  34. McElwain TF, Perryman LE, Musoke AJ, McGuire TC (1991) Molecular characterization and immunogenicity of neutralization-sensitive Babesia bigemina merozoite surface proteins. Mol Biochem Parasitol 47: 213-222.
  35. Mehla K, Ramana J (2016) Identification of epitope-based peptide vaccine candidates against enterotoxigenic Escherichia coli: a comparative genomics and Immunoinformatics approach. Mol Biosyst 12: 890-901.
  36. Menezes-Souza D, Mendes TA, Nagem RA, Santos TT, Silva AL, Santoro MM, de Carvalho SF, Coelho EA, Bartholomeu DC, Fujiwara RT (2014) Mapping B-cell epitopes for the peroxidoxin of Leishmania (Viannia) braziliensis and its potential for the clinical diagnosis of tegumentary and visceral leishmaniasis. PloS One 9: e99216.
  37. Mercado-Uriostegui MA, Castro-Sánchez LA, Batiha GE, Valdez-Espinoza UM, Falcón-Neri A, Ramos-Aragon JA, Hernández-Ortiz R, Kawazu SI, Igarashi I, Mosqueda J (2022) The GP-45 Protein, a Highly Variable Antigen from Babesia bigemina, Contains Conserved B-Cell Epitopes in Geographically Distant Isolates. Pathogens 11: 591.
  38. Mishra VS, McElwain TF, Dame JB, Stephens EB (1992) Isolation, sequence and differential expression of the p58 gene family of Babesia bigemina. Mol Biochem Parasitol 53: 149-158.
  39. Mosqueda J, Olvera-Ramirez A, Aguilar-Tipacamu G, Canto GJ (2012) Current advances in detection and treatment of babesiosis. Curr Med Chem 19: 1504-1518.
  40. Moubri K, Kleuskens J, Van de Crommert J, Scholtes N, Van Kasteren T, Delbecq S, Grenflot A, Schetters T (2018) Discovery of a recombinant Babesia canis supernatant antigen that protects dogs against virulent challenge infection. Vet Parasitol 249: 21-29.
  41. Mucci J, Carmona SJ, Volcovich R, Altcheh J, Bracamonte E, Marco JD, Nielsen M, Buscaglia CA, Agüero F (2017) Next-generation ELISA diagnostic assay for Chagas Disease based on the combination of short peptidic epitopes. PLoS Negl Trop Dis 11: e0005972.
  42. Nabi H, Rashid I, Ahmad N, Durrani A, Akbar H, Islam S, Bajwa AA, Shehzad W, Ashraf K, Imran N (2017) Induction of specific humoral immune response in mice immunized with ROP18 nanospheres from Toxoplasma gondii. Parasitol Res 116: 359-370.
  43. Naeem H, Sana M, Islam S, Khan M, Riaz F, Zafar Z, Akbar H, Shehzad W, Rashid MI (2018) Induction of Th1 type-oriented humoral response through intranasal immunization of mice with SAG1- Toxoplasma gondii polymeric nanospheres. Artif Cells Nanomed Biotechnol 46: 1025-1034.
  44. Patarroyo MF, Cifuentes G, Bermudez A, Patarroyo MA (2008) Strategies for developing multi‐epitope, subunit‐based, chemically synthesized anti‐malarial vaccines. J Cell Mol Med 12: 1915-1935.
  45. Rahman SU, Akbar H, Shabbir MZ, Ullah U, Rashid MI (2021) Development of Human Toxo IgG ELISA Kit, and False-Positivity of Latex Agglutination Test for the Diagnosis of Toxoplasmosis. Pathogens 10: 1111.
  46. Rashid I, Hedhli D, Moiré N, Pierre J, Debierre-Grockiego F, Dimier-Poisson I, Mévélec MN (2011) Immunological responses induced by a DNA vaccine expressing RON4 and by immunogenic recombinant protein RON4 failed to protect mice against chronic toxoplasmosis. Vaccine 29: 8838-8846.
  47. Rauf U, Shabir S, Khan M, Rashid MI, Akbar H, Durrani AZ (2020) Identification of 23 kD immunogen from native antigens of Babesia bigemina in splenectomized calf. Int J Agric Biol 24: 1788-1794.
  48. Rauf U, Suleman M, Abid A, Jamil H, Menghwar H, Durrani AZ, Rashid MI, Akbar H (2020) Humoral and cell-mediated immune response validation in calves after a live attenuated vaccine of Babesia bigemina. Pathogens 9: 936.
  49. Rehman A, Conraths FJ, Sauter‐Louis C, Krücken J, Nijhof AM (2019) Epidemiology of tick‐ borne pathogens in the semi‐arid and the arid agro‐ecological zones of Punjab province, Pakistan. Transbound Emerg Dis 66: 526-536.
  50. Rodríguez-Camarillo SD, Quiroz-Castañeda RE, Aguilar-Díaz H, Vara-Pastrana JE, Pescador- Pérez D, Amaro-Estrada I, Martínez-Ocampo F (2020) Immunoinformatic analysis to identify proteins to be used as potential targets to control bovine anaplasmosis. Int J Microbiol 2020: 88.
  51. Islam MS, Aryasomayajula A, Selvaganapathy PR (2017) A review on macroscale and microscale cell lysis methods. Micromachines 8: 83
  52. Shkap V, Leibovitz B, Krigel Y, Hammerschlag J, Marcovics A, Fish L, Molad T, Savitsky I, Mazuz M (2005) Vaccination of older Bos taurus bulls against bovine babesiosis. Vet Parasitol 129: 235-242.
  53. Siddique RM, Sajid MS, Iqbal Z, Saqib M (2020) Association of different risk factors with the prevalence of babesiosis in cattle and buffalos. Pak J Agri Sci 57: 517-524.
  54. Silva MG, Knowles DP, Suarez CE (2016) Identification of interchangeable cross-species function of elongation factor-1 alpha promoters in Babesia bigemina and Babesia bovis. Parasit Vectors 9: 576.
  55. Singh H, Mishra AK, Rao JR, Tewari AK (2009) Comparison of indirect fluorescent antibody test (IFAT) and slide enzyme linked immunosorbent assay (SELISA) for diagnosis of Babesia bigemina infection in bovines. Trop Anim Health Prod 41: 153- 159.
  56. Teimouri A, Modarressi MH, Shojaee S, Mohebali M, Rezaian M, Keshavarz H (2019) Development, optimization, and validation of an in-house Dot-ELISA rapid test based on SAG1 and GRA7 proteins for serological detection of Toxoplasma gondii infections. Infect Drug Resist 12: 2657-2669.
  57. Tuvshintulga B, Sivakumar T, Yokoyama N, Igarashi I (2019) Development of unstable resistance to diminazene aceturate in Babesia bovis. Int J Parasitol: Drugs Drug Resist 9: 87-92.
  58. Uilenberg G (2006) Babesia—a historical overview. Vet Parasitol 138: 3-10.
  59. Wagner GG, Holman P, Waghela S (2002) Babesiosis and heart water: threats without boundaries. Vet Clin North Am Food Anim Pract 18: 417-430.
  60. Wieser SN, Schnittger L, Florin-Christensen M, Delbecq S, Schetters T (2019) Vaccination against babesiosis using recombinant GPI-anchored proteins. Int J Parasitol 49: 175-181.
  61. Wright IG, Goodger BV, Leatch G, Aylward JH, Rode-Bramanis K, Waltisbuhl DJ (1987) Protection of Babesia bigemina-immune animals against subsequent challenge with virulent Babesia bovis. Infect Immun 55: 364-368.
  62. Yadav S, Prakash J, Shukla H, Das KC, Tripathi T, Dubey VK (2020) Design of a multi- epitope subunit vaccine for immune-protection against Leishmania parasite. Pathog Glob Health 114: 471-481.
  63. Yoshida M, Reyes SG, Tsuda S, Horinouchi T, Furusawa C, Cronin L (2017) Time- programmable drug dosing allows the manipulation, suppression and reversal of antibiotic drug resistance in vitro. Nat Commun 8: 15589.
Go to article

Authors and Affiliations

Z. Ul Rehman
1
M. Suleman
2
K. Ashraf
1
S Ali
1
S. Rahman
1
M.I. Rashid
1

  1. Department of Parasitology, University of Veterinary and Animal Sciences, Syed Abdul Qadir Jillani (Out Fall) Road, Lahore, 54000, Pakistan
  2. University Diagnostic Laboratory, Institute of Microbiology, University of Veterinary and Animal Sciences, Syed Abdul Qadir Jillani (Out Fall) Road, Lahore, 54000, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

Traditionally the aggregate production plan helps in determining the inventory, production, and work-force, based on the demand forecasts without considering the productivity loss at a tactical level in supply chain planning. In this paper, we include the productivity loss into traditional aggregate production plan and the prescriptive analytics technique, linear programming, is used to solve this problem of practical interest in the domain of multifarious businesses and industries. In this study, we discussed two model variations of the aggregate production planning problem with and without productivity loss, i) fixed work-force, and ii) variable Work Force. The mathematical models were designated to be solved by using an open-source python pulp package in order to evaluate the impacts of the productivity loss on both the models. PuLP is an open-source modeling framework provided by the COIN-OR Foundation (Computational Infrastructure for Operations Research) for linear and integer Programing problems written in Python. The computational results indicate that the productivity loss has direct impact on the workforce hiring and firing.
Go to article

Authors and Affiliations

Hakeem Ur REHMAN
Ayyaz AHMAD
Zarak ALI
Sajjad Ahmad BAIG
Umair MANZOOR

Download PDF Download RIS Download Bibtex

Abstract

Newcastle disease (ND) is a frequently reported disease in poultry among both vaccinated and non-vaccinated flocks in Pakistan. During 2011-2012 poultry industry in Punjab, mainly in Lahore region, faced fatal outbreaks of ND caused by a variant strain. An analytical study was conducted during outbreak period in Lahore region. A total of 114 environmentally controlled farms were selected with the help of convenient sampling method. A questionnaire was designed about the potential risk factors associated with the spread of ND outbreak. The bivariate relationships between ND status and independent variables were investigated by applying the Chi-square and Fisher’s exact test. Multivariable logistic model was used to estimate the effect of each studied variable on the outcome by adjusting the other variables in the model. The variables which showed an association with ND outbreaks at commercial poultry farms were improper method for dead birds disposal (OR=4.96; 95% CI 1.63-15.12), use of same feed transporting vehicle at multiple poultry farms (OR=4.92; 95% CI 1.58-15.33), farm to farm distance of less than 1 km (OR=9.32; 95% CI(1.19-73.12), number of sheds at one farm (OR=2.31; 95% CI 0.93-5.69), labor type (OR=2.72; 95% CI 0.83-8.88) and biosecurity (OR= 4.47; 95% CI 0.56-35.66).
Go to article

Bibliography


Abbas T, Wilking H, Horeth-Bontgen D, Conraths FJ (2012) Contact structure and potential risk factors for avian influenza transmission among open-sided chicken farms in Kamalia, an important poultry rearing area of Pakistan. Berl Munch Tierarztl Wochenschr 125: 110-116.

Akhtar S, Zahid S (1995) Risk indicators for Newcastle disease outbreaks in broiler flocks in Pakistan. Prev Vet Med 22: 61-69.

Alexander DJ (2000) Newcastle disease and other avian paramyxoviruses. Rev Sci Tech 19: 443-55.

Alexander DJ (2001) Newcastle disease. Br Poult Sci 42: 5-22.

Ali M, Muneer B, Hussain Z, Rehmani SF, Yaqub T, Naeem M (2014) Evaluation of efficacy of killed and commercially available live New-castle disease vaccine in broiler chickens in Pakistan. J Anim Plant Sci 24: 1663-1667.

GOP (2020) Economic of Survey Pakistan 2019-2020 Ministry of Finance, Government of Pakistan, Islamabad.

Badubi SS, Ravindran V, Reid J (2004) A survey of small-scale broiler production systems in Botswana. Trop Anim Health Prod 36: 823-834.

Chaudhry M, Rashid HB, Thrusfield M, Welburn S, Bronsvoort BM (2015) A case-control study to identify risk factors associated with avian influenza subtype H9N2 on commercial poultry farms in Pakistan. PLoS One 10: e0119019.

Chukwudi, OE, Chukwuemeka ED, Mary U (2012) Newcastle disease virus shedding among healthy commercial chickens and its epidemio-logical importance. Pak Vet J 32: 354-356.

Cornax I, Miller PJ, Afonso CL (2012) Characterization of live LaSota vaccine strain-induced protection in chickens upon early challenge with a virulent Newcastle disease virus of heterologous genotype. Avian Dis 56: 464-470.

Dohoo I, Martin W, Stryhn H (2003) Veterinary epidemiologic research, University of Prince Edward Island, Charlottetown.

East I, Kite V, Daniels P, Garner G (2006) A cross-sectional Survey of Australian chicken farms to identify risk factors associated with sero-positivity to Newcastle-disease virus. Prev Vet Med 77: 199-214.

Farooq M, Uddin Z, Durrani FR, Mian MA, Chand N, Ahmed J (2002) Prevalent diseases and overall mortality in Broilers. Pak Vet J 22: 111-115.

Gowthaman V, Singh SD, Dhama K, Ramakrishnan MA, Malik YP, Murthy TG, Chitra R, Munir M (2019) Co-infection of Newcastle disease virus genotype XIII with low pathogenic avian influenza exacerbates clinical outcome of Newcastle disease in vaccinated layer poultry flocks. VirusDisease 30: 441-452.

Hasni MS, Chaudhary M, Mushtaq MH, Durrani AZ, Rashid HB, Ali M, Ahmed M, Sattar H, Aqib AI, Zhang H (2021) Active surveillance and risk assessment of avian influenza virus subtype H9 from non-vaccinated commercial broilers of Pakistan. Braz J Poult Sci 23 (03).

Kleinbaum DG, Kupper LL Morgenstem H (1982) Epidemiologic research: principles and quantitative methods. John Wiley & Sons, Inc, New York.

Kuhn JH, Adkins S, Alioto D (2020) Taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Buniyavirales and Mononegavirales. Arch Virol. 165: 3023-3072.

Lee SM, Cho ES, Choi BH, Son HY (2013) Clinical and pathological studies on co-infection of low pathogenic avian influenza virus and Newcastle disease virus in the chicken. Korean J Vet Serv 36: 163-169.

Leibler JH, Carone M, Silbergeld EK (2010) Contribution of Company Affiliation and Social Contacts to Risk Estimates of Between-Farm Transmission of Avian Influenza. Plos One 5: e9888.

Mayo MA (2002) A summary of taxonomic changes recently approved by ICTV. Arch Virol. 147: 1655-1663.

Munir MT, Chowdhury MR, Ahmed Z (2016) Emergence of new sub-genotypes of Newcastle disease virus in Pakistan. J Avian Res 2: 1-7.

Musa IW, Abdu PA, Sackey, AKB, Oladele SB, Lawal S, Yakubu IU (2010) Outbreak of Velogenic Viscerotropic Newcastle disease in Broilers. Int J Poult Sci 9: 1116-1119.

Sadiq MA, Nwanta J, Okolocha EC, Tijjani A (2011) Retrospective (2000-2009) Study of Newcastle disease (ND) cases in avian species in Maiduguri, Borno State, North Eastern Nigeria. Int J Poult Sci 10: 76-81.

Sen S, Shane SM, Scholl DT, Hugh-Jones ME, Gillespie JM (1998) Evaluation of alternative strategies to prevent Newcastle disease in Cambodia. Pre Vet Med 35: 283-295.

Shankar BP (2008) Common Respiratory Diseases of Poultry. Vet World 1: 217-219.
Go to article

Authors and Affiliations

R. Maqsood
1 2
A. Khan
1
M.H. Mushtaq
1
T. Yaqub
3
M.A. Aslam
4
H.B. Rashid
5
S.S. Gill
1
R. Akram
1
A. Rehman
1
M. Chaudhry
1

  1. Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore-Pakistan
  2. Institute of Continuing Education and Extension, University of Veterinary and Animal Sciences, Lahore-Pakistan
  3. Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore-Pakistan
  4. Office of Research Innovation and Commercialization, University of Veterinary and Animal Sciences, Lahore-Pakistan
  5. Department of Veterinary Surgery and Pet Sciences, University of Veterinary and Animal Sciences, Lahore-Pakistan
Download PDF Download RIS Download Bibtex

Abstract

The wind energy conversion systems (WECS) suffer from an intermittent nature of source (wind) and the resulting disparity between power generation and electricity demand. Thus, WECS are required to be operated at maximum power point (MPP). This research paper addresses a sophisticated MPP tracking (MPPT) strategy to ensure optimum (maximum) power out of the WECS despite environmental (wind) variations. This study considers a WECS (fixed pitch, 3KW, variable speed) coupled with a permanent magnet synchronous generator (PMSG) and proposes three sliding mode control (SMC) based MPPT schemes, a conventional first order SMC (FOSMC), an integral back-stepping-based SMC (IBSMC) and a super-twisting reachability-based SMC, for maximizing the power output. However, the efficacy of MPPT/control schemes rely on availability of system parameters especially, uncertain/nonlinear dynamics and aerodynamic terms, which are not commonly accessible in practice. As a remedy, an off-line artificial function-fitting neural network (ANN) based on Levenberg-Marquardt algorithm is employed to enhance the performance and robustness of MPPT/control scheme by effectively imitating the uncertain/nonlinear drift terms in the control input pathways. Furthermore, the speed and missing derivative of a generator shaft are determined using a high-gain observer (HGO). Finally, a comparison is made among the stated strategies subjected to stochastic and deterministic wind speed profiles. Extensive MATLAB/Simulink simulations assess the effectiveness of the suggested approaches.
Go to article

Authors and Affiliations

Awais Nazir
1
Safdar Abbas Khan
1
Malak Adnan Khan
2
Zaheer Alam
3
Imran Khan
4
Muhammad Irfan
5
ORCID: ORCID
Saifur Rehman
5
Grzegorz Nowakowski
6
ORCID: ORCID

  1. Department of Electrical Engineering, National University of Science and Technology, Pakistan
  2. Department of Electronics Engineering, University of Engineering and Technology Peshawar, Abbottabad campus, Pakistan
  3. Department of Electrical and Computer Engineering, COMSATS University Islamabad, Abbottabad Campus, Pakistan
  4. Department of Electrical, Electronics and Computer Systems, College of Engineering and Technology, University of Sargodha, Pakistan
  5. Electrical Engineering Department, College of Engineering, Najran University, Saudi Arabia
  6. Faculty of Electrical and Computer Engineering, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The electrical network is a man-made complex network that makes it difficult to monitor and control the power system with traditional monitoring devices. Traditional devices have some limitations in real-time synchronization monitoring which leads to unwanted behavior and causes new challenges in the operation and control of the power systems. A Phasor measurement unit (PMU) is an advanced metering device that provides an accurate real-time and synchronized measurement of the voltage and current waveforms of the buses in which the PMU devices are directly connected in the grid station. The device is connected to the busbars of the power grid in the electrical distribution and transmission systems and provides time-synchronized measurement with the help of the Global Positioning System (GPS). However, the implementation and maintenance cost of the device is not bearable for the electrical utilities. Therefore, in recent work, many optimization approaches have been developed to overcome optimal placement of PMU problems to reduce the overall cost by providing complete electrical network observability with a minimal number of PMUs. This research paper reviews the importance of PMU for the modern electrical power system, the architecture of PMU, the differences between PMU, micro-PMU, SCADA, and smart grid (SG) relation with PMU, the sinusoidal waveform, and its phasor representation, and finally a list of PMU applications. The applications of PMU are widely involved in the operation of power systems ranging from power system control and monitor, distribution grid control, load shedding control and analyses, and state estimation which shows the importance of PMU for the modern world.
Go to article

Authors and Affiliations

Maveeya Baba
1
ORCID: ORCID
Nursyarizal B.M. Nor
1
Aman Sheikh
2
Grzegorz Nowakowski
3
ORCID: ORCID
Faisal Masood
1
Masood Rehman
1
Muhammad Irfan
4
ORCID: ORCID
Ahmed Amirul Arefin
Rahul Kumar
5
Baba Momin
6

  1. Department of Electrical and Electronics Engineering Universiti Teknologi Petronas, Malaysia
  2. Department of Electronics and Computer Systems Engineering (ECSE), Cardiff School of Technologies, Cardiff Metropolitan University, United Kingdom
  3. Faculty of Electrical and Computer Engineering, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
  4. College of Engineering, Electrical Engineering Department, Najran University, Saudi Arabia
  5. Laboratorio di Macchine e Azionamenti Elettrici, Dipartmento di Ingegneria Elettrica, Universita Degli Studi di Roma, 00185 Rome, Italy
  6. Department of Electrical Engineering CECOS University of Information Technology and Emerging Sciences, Pakistan

This page uses 'cookies'. Learn more