Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

As a wafer cleaning process, RCA (Radio Corporation of America) cleaning is mainly used. However, RCA cleaning has problems such as instability of bath life, re-adsorption of impurities and high-temperature cleaning. Herein, we tried to improve the purity of silicon wafers by using a chelating agent (oxalic acid) to solve these problems. Compounds produced by the reaction between the cleaning solution and each metal powder were identified by referring to the pourbaix diagram. All metals exhibited a particle size distribution of 10 μm or more before reaction, but a particle size distribution of 500 nm or less after reaction. In addition, it was confirmed that the metals before and after the reaction showed different absorbances. As a result of elemental analysis on the surface of the reclaimed silicon wafer cleaned through such a cleaning solution, it was confirmed that no secondary phase was detected other than Si.
Go to article

Bibliography

[1] K. Liu, D. Zuo, X.P. Li, M. Rahman, J. Vac. Sci. Technol. B: Microelectronics and Nanometer Structures 27 (3), 1361-1366 (2009).
[2] M. Kim, K. Ryu, K.J. Lee, J. Korean Powder Metall. Inst. 28 (1), 25-30 (2021)
[3] W. Kern, J. Electrochem. Soc. 137 (6), 1887-1892 (1990).
[4] O .J. Anttila, J. Electrochem. Soc. 139 (4), 1180-1185 (1992).
[5] K. Saga, J. Electrochem. Soc. 143 (10), 3279-3284 (1996).
[6] M. Itano, F.W. Kern, M. Miyashita, T. Ohmi, IEEE Trans. Semicond. Manuf. 6 (3), 258-267 (1993).
[7] W. Kern, Handbook of silicon wafer cleaning technology, United States 2018.
[8] M. Matsuo, T. Takahashi, H. Habuka, A. Goto, Mat. Sci. Semicon. Proc. 110, 104970 (2020).
[9] G .W. Gale, D.L. Rath, E.I. Cooper, S. Estes, H.F. Okorn-Schmidt, J. Brigante, R. Jagannathan, G. Settembre, E. Adams, J. Electrochem. Soc. 148 (9), G513-G516 (2001).
[10] D. Liu, Z. Li, Y. Zhu, Z. Li, R. Kumar, Carbohydr. Polym. 111, 469-476 (2014).
[11] J.B. Fein, Geology 19 (10), 1037-1040 (1991).
[12] N. Zubair, K. Akhtar, Trans. Nonferrous Met. Soc. China 29 (1), 143-156 (2019).
[13] D. Nansheng, W. Feng, L. Fan, L. Zan, Chemosphere 35 (11), 2697-2706 (1997).
[14] A.K. Sharma, A. Singh, R.K. Mehta, S. Sharma, S.P. Bansal, K.S. Gupta, Int. J. Chem. Kinet. 43 (7), 379-392 (2011).
[15] M.Z. Mubarok, J. Lieberto, Procedia Earth Planet. Sci. 6, 457-464 (2013).
[16] D. Rai, B.M. Sass, D.A. Moore, Inorg. Chem. 26 (3), 345-349 (1987).
[17] C.H. Bamford, R.G. Compton, C.F.H. Tipper, Reactions of metallic salts and complexes, and organometallic compounds, Elsevier 1972.
Go to article

Authors and Affiliations

Keunhyuk Ryu
1
Myungsuk Kim
1
Jaeseok Roh
1
ORCID: ORCID
Kun-Jae Lee
1
ORCID: ORCID

  1. Dankook University, Department of Energy Engineering, Cheonan 31116, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

In this paper, synthesize MoO3 particles with various particle properties by control growth influence factors was mainly studied. The experimental conditions were established in molar ratio of Mo:urea and pH levels. The plate-type of MoO3 particles were formed without proceeding any established conditions, but the rod-shape particles were formed by adjusting molar ratio of Mo:urea. Also, different ranges of the particle size were formed by adjusting experimental conditions. Through the results, it was confirmed that particles with a size in the range of 300 ~ 400 nm were obtained by adjusting precursor concentration and the micrometer size of particles were formed by increase pH levels. The properties of the particles formed accordingly by setting various factors that can affect the growth process of MoO3 particle was analyzed as variables and the particle growth behavior was also observed.
Go to article

Bibliography

[1] N.Z. Wooster, Kristallogr. Cryst. Mater. 80 (1-6), 504-512 (1932).
[2] P. Martín-Ramos, A.Fernández-Coppel I, M. Avella, J. Martin-Gil, Nanomaterials 8 (7), 559 (2018).
[3] Y. Zhao, J. Liu, Y. Zhou, Z. Zhang, Y. Xu. H. Naramoto, S. Yamamoto, J. Condens, Matter Phys. 15 (35), L547 (2013).
[4] J. Haber, E. Lalik, Catal. Today. 33 (1-3), 119-137 (1997).
[5] Y. Song, Y. Zhao, Z. Huang, J. Zhao, J. Alloys Compd. 693, 1290- 1296 (2017).
[6] F.P. Daly, H. Ando, J.L. Schmitt, E.A Sturm, J. Catal. 108 (2), 401-408 (1987).
[7] J. Wang, S. Dong, C. Yu, X. Han, J. Guo, J. Sun, Catal. Commun. 92, 100-104 (2017).
[8] M . Chen, X. Ma, R. Ma, Z. Wen, F. Yan, K. Cui, Y. Li, Ind. Eng. Chem. Res. 56 (47), 14025-14033 (2017).
[9] K. Chen, S. Xie, A.T. Bell, E. Iglesia, J. Catal. 198 (2), 232-242 (2001).
[10] M . Saghafi, S. Heshmati-Manesh, A. Ataie, A.A. Khodadadi, Int. J. Refract. Hard Met. 30 (1), 128-132 (2012).
[11] A. Borgschulte, O. Sambalova, R. Delmelle, S. Jenatsch, R. Hany, F. Nüesch, Sci. Rep. 7, 40761 (2017).
[12] J. Orehotsky, M. Kaczenski, Mater. Sci. Eng. C. 40 (2), 245-250 (1979).
[13] Y. Zhang, S. Jiao, C.K. Chou, G.H. Zhang, Int. J. Hydrog. Energy. 45 (3), 1435-1443 (2020).
[14] L. Wang, G.H. Zhang, J.S. Wang, K.C. Chou, J. Phys. Chem. C. 120 (7), 4097-4103 (2016).
[15] D.P. Khomoksonova, A.D. Budaeva, I.G. Antropova, IOP Conf. Ser. Earth Environ. Sci. 320, No. 1, 012033 (2019).
[16] B.S Kim, H.I Lee, Y.Y. Choi, S. Kim, Mater. Trans. 50 (11), 2669- 2674 (2009).
[17] Z. Li, J. Ma, B. Zhang, C. Song, D. Wang, CrystEngComm. 19 (11), 1479-1485 (2017).
[18] B. Li, X. Wang, X. Wu, G. He, R. Xu, X. Lu, I.P. Parkin, Nanoscale. 9 (31), 11012-11016 (2017).
[19] T. Xia, Q. Li, X. Liu, J. Meng, X. Cao, J. Phys. Chem. B. 110 (5), 2006-2012 (2006).
[20] C.V. Ramana, V.V. Atuchin, I.B. Troitskaia, S.A. Gromilov, V.G. Kostrovsky, G.B. Saupe, Solid State Commun. 149 (1-2), 6-9 (2009).
[21] S. Sen, T. Dzwiniel, K. Pupek, G. Krumdick, P. Tkac, G.F. Vandegrift, Argonne National Lab. (ANL), Argonne, IL (United States). ANL/NE-16/47 (2016).
[22] D. Parviz, M. Kazemeini, A.M. Rashidi, K.J. Jozani, J. Nanopart. Res. 12 (4), 1509-1521 (2010).
[23] M .D. Ward, J.F. Brazdil, R.K. Grasselli, J. Phys. Chem. C. 88 (19), 4210-4213 (1984). [24] X.W. Lou, H.C. Zeng, Chem. Mater. 14 (11), 4781-4789 (2002).
[25] H . Tyagi, A. Kushwaha, A. Kumar, M. Aslam, Int. J. Nanosci. 10 (04n05), 857-860 (2011).
Go to article

Authors and Affiliations

Namhun Kwon
1
ORCID: ORCID
Seyoung Lee
1
ORCID: ORCID
Jaeseok Roh
1
ORCID: ORCID
Kun-Jae Lee
1
ORCID: ORCID

  1. Dankook University, Department of Energy Engineering, Cheonan 31116, Republic of Korea

This page uses 'cookies'. Learn more