Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 32
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This article has two outreach aims. It concisely summarizes the main research and technical efforts in the EC H2020 ARIES Integrating Activity – Accelerator Research and Innovation for European Science and Society [1] during the period 2017/2018. ARIES is a continuation of CARE, TIARA and EuCARD projects [2-3]. The article also tries to show these results as an encouragement for local physics and engineering, research and technical communities to participate actively in such important European projects. According to the author’s opinion this participation may be much bigger [4-27]. All the needed components to participate – human, material and infrastructural are there [4,7]. So why the results are not satisfying as they should be? The major research subjects of ARIES are: new methods of particles acceleration including laser, plasma and particle beam interactions, new materials and accelerator components, building new generations of accelerators, energy efficiency and management of large accelerator systems, innovative superconducting magnets, high field and ultra-high gradient magnets, cost lowering, system miniaturization, promotion of innovation originating from accelerator research, industrial applications, and societal implications. Two institutions from Poland participate in ARIES – these are Warsaw University of Technology and Institute of Nuclear Chemistry and Technology in Warsaw. There are not present some of the key institutes active in accelerator technology in Poland. Let this article be a small contribution why Poland, a country of such big research potential, contributes so modestly to the European accelerator infrastructural projects? The article bases on public and internal documents of ARIES project, including the EU Grant Agreement and P1 report. The views presented in the paper are only by the author and not necessarily by the ARIES.

Go to article

Authors and Affiliations

Ryszard S. Romaniuk
Download PDF Download RIS Download Bibtex

Abstract

Abstract ILC machine - International Liner Collider, is one of two accelerators e+e- just under design and advanced consideration to be built with final energy of colliding electron and positron beams over 1 TeV. An alternative project to ILC is CLIC in CERN The ILC machine is an important complementary addition for the research potential of the LHC accelerator complex. The required length of ILC is minimally 30 km, but some versions of the TDR estimates mention nearly 50km. Superconducting RF linacs will be built using well established 1,3 GHz TESLA technology using ultrapure niobium or Nb3Sn resonant microwave cavities of RRR class, of ultimate finesse, working with gradients over 35MV/m, while some versions of the design mention ultimate confinement as high as 50MV/m. Several teams from Poland (Kraków. Warszawa, Wrocław - IFJ-PAN, AGH, UJ, NCBJ, UW, PW, PWr, INT-PAN) participate in the global design effort for this machine - including detectors, cryogenics, and SRF systems. Now it seems that the ILC machine will be built in Japan, during the period of 2016-2026. If true, Japan will turn to a world super-power in accelerator technology no.3 after CERN and USA. The paper summarizes the state-ofthe- art of technical and administration activities around the immense ILC and CLIC machines, with emphasis on potential participation of Polish teams in the global effort of newly established LCC - The Linear Collider Consortium.
Go to article

Authors and Affiliations

Ryszard S. Romaniuk
Download PDF Download RIS Download Bibtex

Abstract

The ILC is an immense e+e- machine planned since 2004 by a large international collaboration, to be potentially built in Japan [1]. The gigantic size of the whole research infrastructure, the involved human, technical and financial resources, and the pressure of new emerging and potentially soon to be competitive accelerator technologies, make the final building decision quite difficult. A vivid debate is carried on this subject globally by involved accelerator research communities. The European voice is very strong and important in this debate, and has recently been essentially refreshed by clear statements in a few official documents [2]. The final HEP European Strategy Document is just under preparation. This paper is a very modest and subjective voice in this debate originating from Poland, which around 50 researchers are present at the list of 2400 signatories for the original ILC TDR document published in 2013 [3].

Go to article

Authors and Affiliations

Ryszard S. Romaniuk
Download PDF Download RIS Download Bibtex

Abstract

WILGA annual symposium on advanced photonic and electronic systems has been organized by young scientist for young scientists since two decades. It traditionally gathers around 400 young researchers and their tutors. Ph.D students and graduates present their recent achievements during well attended oral sessions. Wilga is a very good digest of Ph.D. works carried out at technical universities in electronics and photonics, as well as information sciences throughout Poland and some neighboring countries. Publishing patronage over Wilga keep Elektronika technical journal by SEP, IJET and Proceedings of SPIE. The latter world editorial series publishes annually more than 200 papers from Wilga. Wilga 2018 was the XLII edition of this meeting. The following topical tracks were distinguished: photonics, electronics, information technologies and system research. The article is a digest of some chosen works presented during Wilga 2018 symposium. WILGA 2017 works were published in Proc. SPIE vol.10445. WILGA 2018 works were published in Proc. SPIE vol.10808.
Go to article

Authors and Affiliations

Ryszard S. Romaniuk
Download PDF Download RIS Download Bibtex

Abstract

On 2-3 May 2022 ARIES – Accelerator Research and Innovation for European Science and Society held its last annual conference in CERN summarizing 6 year long effort on the smart development of particle accelerator infrastructures in Europe. The whole series of Integrating Activities on accelerator infrastructures started in 2003 with preparations of CARE, then followed by EuCARD, TIARA, EuCARD2 and culminating with ARIES.
Go to article

Authors and Affiliations

Ryszard S. Romaniuk
1

  1. Warsaw University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Europe has to face strong competitive challenges in the field of QIT from other regions of the world. The tools for the effective implementation of the challenges related to the start, we hope, of building a quantum civilization are both common and individual in particular European countries. Joint projects in the field of QIT, usually narrowly focused, are announced by large European Agencies and are related to their activities. Large-scale collaborative projects are of course the domain of the EC. National projects depend heavily on the capabilities of individual countries and vary greatly in size. The most technologically advanced European countries invest hundreds of millions of Euros in national QIT projects annually. The largest European FET class project currently being implemented is the Quantum Flagship. Although the EQF is basically just one of the elements of a large and complicated European scene of development of quantum technologies, it becomes the most important element and, in a sense, a dominant one, also supported from the political level. There are complex connections and feedbacks between the elements of this quantum scene. National projects try to link to the EQF. Here we are interested in such connections and their impact on the effectiveness of QIT development in Europe, and especially in Poland.
Go to article

Authors and Affiliations

Ryszard S. Romaniuk
1

  1. Warsaw University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

QIT–Quantum Information Technologies promises are very serious, greatly exceeding only technical and market levels. Development of QIT in Europe, treated as building a new infrastructural civilization level, requires a broader view of coordination, funding and priority-setting policy. Simple measures used in the case of the development of new technologies, but not creating a significant ecosystem, are insufficient in this case. Quantum technologies are poised to create a new information layer of knowledge-based society. In this essay, the author subjectively addresses some of the issues such as: what we already know and what we don't know, and what efforts are being made in Europe. Polish version of this paper was published in Przegl.Telekom.2.23.
Go to article

Authors and Affiliations

Ryszard S. Romaniuk
1

  1. Warsaw University of Technology, Poland

This page uses 'cookies'. Learn more