Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This article shows that the most sensitive indicator of local and regional karst activity in territories of apparent karst processes is the behaviour of karst lakes. The authors propose a hydrogeological monitoring methodology for the karst pro-cess based on the phase-measuring geoelectric control method in the coastal zone of karst lakes. The geoelectric current control of hydrogeological changes in the medium at local levels uses a multi-frequency vertical electric sounding com-bined with a phase-measuring method of registering the geoelectric signal. These proven methods permit to distinguish var-iations of spatial parameters and the electric conductivity of several layers at a time. Moreover, they significantly increase the noise resistance and sensitivity of the measuring system. An adaptive algorithm function of the measuring complex for geoelectric monitoring of karst lakes’ coastal zones was developed to control the operation of facilities and data collection systems. Based on an example of a lake where karst processes are active, the key zones of hydrogeological control were identified depending on karst manifestations. The research confirmed the possibility of local and regional monitoring of the development and forecasting of destructive karst-suffosion processes based on hydrogeological regime observations of karst lakes.
Go to article

Bibliography

ANGEL M.L., JOHNSTON S., O’STEEN K., BROWN C., SANDO T. 2015. Groundwater control issues in transportation engineering: A short review of dewatering methods and lessons learned. Journal of Engineering Science & Technology Review. Vol. 8(3) p. 8–13.
ANIKEEV A., ANISIMOVA N., KOZHEVNIKOVA I., KOZLYAKOVA I. 2015. Assessment of karst-suffosion hazard along the routes of designed metro lines in Moscow. In: Engineering geology for society and territory. Vol. 5. Eds. G. Lollino, A. Manconi, F. Guzzetti, M. Culshaw, P. Bobrowsky, F. Luino. Springer International Publishing, Cham p. 913–917. DOI 10.1007/ 978-3-319-09048-1_177.
BOHACHENKO L.D. 2012. Preparation and implementation of monitoring Geological and hydrogeological conditions during construction and operation multifunctional complex. Dnipropetrovsk University bulletin. Geology, Geography. Vol. 20(3/2) p. 77–81.
BONACCI O., JURAČIĆ M. 2010. Sustainability of the karst environment-Dinnaric karst and other karst regions. Geologia Croatica. Vol. 63(2) p. 127–127.
BYKOV A.A., KUZICHKIN R.O. 2014. Regression prediction algorithm of suffusion processes development during geoelectric monitoring. Advances in Environmental Biology. Vol. 8(5) p. 1404–1409.
BYKOV A., KUZICHKIN O., DOROFEEV N., KOSKIN A. 2017. Information-hardware support of systems of the automated electromagnetic monitoring of geodynamic objects. December 2017 Procedia Computer Science. Vol. 103 p. 253–259. DOI 10.1016/j.procs.2017.01.098.
CHEN H.-J., CHEN C.-C., OUILLON G., SORNETTE D. 2017. Using geoelectric field skewness and kurtosis to forecast the 2016/2/6, ML 6.6 Meinong, Taiwan Earthquake. Terrestrial, Atmospheric and Oceanic Sciences. Vol. 28(5) p. 745–761.
DOLOGLOU E. 2011. Possible interrelation between the lead time of precursory seismic electric signals (SES) and geodynamics in Aegean Sea. Natural Hazards and Earth System Sciences. Vol. 11(6) p. 1599–1603. DOI 10.5194/nhess-11-1599-2011.
DONG B., DANSKIN D.W., PIRJOLA R.J., BOTELER D.H., WANG Z.Z. 2013. Evaluating the applicability of the finite element method for modelling of geoelectric fields. Annales Geophysicae. Vol. 31 p. 1689–1698. DOI 10.5194/angeo-31-1689-2013
DOROFEEV N., KUZICHKIN O., EREMENKO V. 2016. The method of selection of key objects and the construction of forecast function of the destructive geodynamic processes. International Multidisciplinary Scientific GeoConference: SGEM 1 p. 883–890.
EPURE L., BORDA D.R. 2014. Groundwater contamination and the relationship between water chemistry and biotic components in a karst system (Bihor Mountains, Romania). Travaux de lInstitut de Spéologie Emil Racovita. Vol. 53 p. 69–84.
GOLDSCHEIDER N., DREW D. (eds.) 2014. Methods in karst hydrogeology. IAH: International Contributions to Hydrogeology. No. 26. CRC Press. ISBN 9780367388980 pp. 264.
GRBIĆ M., SALAMON D., PAVLOVIĆ A. 2013. Interpretation of the results of geoelectric sounding based on a mathematical model of double-layered soil. Zbornik radova, Elektrotehnički institut “Nikola Tesla”. Vol. (23) p. 189–198.
GRECHENEVA A.V., DOROFEEV N.V., KUZICHKIN O.R., EREMENKO V.T. 2016. Organization of geodynamic monitoring on the basis of the geoelectric method. In: GeoBaikal. Conference Proceedings. European Association of Geoscientists & Engineers p. 1–5. DOI 10.3997/2214-4609.201601691.
HAMDAN H., KRITIKAKIS G., ANDRONIKIDIS N., ECONOMOU N., MANOUTSOGLOU E., VAFIDIS A. 2010. Integrated geophysical methods for imaging saline karst aquifers: A case study of Stylos, Chania, Greece. Journal of the Balkan Geophysical Society. Vol. 13 (1) p. 1–8.
IRAWAN D., GRANDIS H., SUMINTADIREDJA P. 2015. Quasi-2D resistivity model from inversion of vertical electrical sounding (VES) data using guided random search algorithm. Journal of Mathematical and Fundamental Sciences. Vol. 47 (3) p. 269–280. DOI 10.5614/j.math.fund.sci.2015.47.3.5.
KAZEEV A., POSTOEV G. 2017. Landslide investigations in Russia and the former USSR. Natural Hazards. Vol. 88(1) p. 81–101.
KHOMENKO V.P., ALESHINA L.A. 2008. Estimation of sinkhole danger at a one-building’s site in Moscow, Russia. In: Sinkholes and the engineering and environmental impacts of karst. 11th Multidisciplinary Conference on Sinkholes p. 269–277. DOI 10.1061/41003(327)26.
KOLYUSHKO D.G., RUDENKO S.S. 2017. Prohrama dlya interpretatsiyi rezul'tativ vertykal'noho elektrychnoho zonduvan¬nya «VEZ-4A» [A computer program for interpretation of the data of vertical electrical sounding VEZ-4a]. Elektrotekhnika i elektromekhanika. No. 3 p. 63–66. DOI 10.20998/2074-272X.2017.3.09.
KUZMIN Y.O. 2015. Recent geodynamics of fault zones: Faulting in real time scale. Geodynamics & Tectonophysics. Vol. 5 (2) p. 401–443.
LA VIGNA F. 2016. Idrogeologia e protezione civile, cosa dovrebbe voler dire “rischio idrogeologico” [Groundwater and civil protection, what the Italian for “hydrogeological risk” should mean]. Acque Sotterranee – Italian Journal of Groundwater. Vol. 5(4) p. 55–57. DOI 10.7343/as-2016-242.
LARSEN P. 2003. Scientific accounts of a vanishing lake: Janez Valvasor. Lake Cerknica and the new philosophy [online]. [Access 03.06.2020]. Available at: https://pavellarsen.files.wordpress.com/2012/11/u-cerknica.pdf
MILANOVIĆ P.T. 2000. Geological engineering in karst: Dams, reservoirs, grouting, groundwater protection, water tapping, tunneling. Belgrade. Zebra. ISBN 867489125X pp. 347.
MOLEK H. 2003. Engineering-geological and geomechanical analysis for the fracture origin of sinkholes in the realm of a high velocity railway line. In: Sinkholes and the engineering and environmental impacts of karst. 11th Multidisciplinary Conference on Sinkholes p. 551–558.
OLADUNJOYE M., JEKAYINFA S. 2015. Efficacy of Hummel (modified Schlumberger) arrays of vertical electrical sounding in groundwater exploration: Case study of parts of Ibadan Metropolis, Southwestern Nigeria. International Journal of Geophysics. Art. ID 612303. DOI 10.1155/2015/ 612303.
OLAWUYI A.K., ABOLARIN S.B. 2013. Evaluation of vertical electrical sounding method for groundwater development in basement complex terrain of west-central Nigeria. Nigerian Journal of Technological Development. Vol. 10(2) p. 22–28.
RAVBAR N., GOLDSCHEIDER N. 2009. Comparative application of four methods of groundwater vulnerability mapping in a Slovene karst catchment. Hydrogeology Journal. Vol. 17(3) p. 725–733. DOI 10.1007/978-3-642-12486-0_51.
ROMANOV R.V., KUZICHKIN O.R., TSAPLEV A.V. 2015. Geoecological control of the aquifer in the decentralized water supply systems of the local level. 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). Piscataway Township. IEEE p. 42–46. DOI 10.1109/IDAACS.2015.7340698.
SANTOSA L.W. 2007. The investigation of groundwater potential by Vertical Electrical Sounding (VES) approach in Arguni Bay Region, Kaimana Regency, West Papua. Forum Geografi. Vol. 21. No. 1 p. 43–56. DOI 10.23917/forgeo. v21i1.1820.
SCAIONI M., FENG T., BARAZZETTI L., PREVITALI M., LU P., QIAO G., WU H., CHEN W., TONG X., WANG W., LI R. 2015. Some applications of 2-D and 3-D photogrammetry during laboratory experiments for hydrogeological risk assessment. Geomatics, Natural Hazards and Risk. Vol. 6 (5–7) p. 473–496. DOI: 10.1080/19475705.2014.885090.
SHARAPOV R.V., KUZICHKIN O.R. 2014. Geodynamic monitoring in area of nuclear power plant. Applied Mechanics and Materials. Vol. 492 p. 556–560.
SOBEIH M.M., EL-ARABI N.E., ESAM EL DEEN Y.H., AWAD B.S. 2017. Management of water resources to control groundwater levels in the southern area of the western Nile delta, Egypt. Water Science. Vol. 31 (2) p. 137–150.
SOKOLOV S.Y., ABRAMOVA A.S., MOROZ E.A., ZARAISKAYA Y.A. 2017. Amplitudes of disjunctive dislocations in the knipovich ridge flanks (northern Atlantic) as an indicator of modern regional geodynamics. Geodynamics & Tectono-physics. Vol. 8(4) p. 769–789.
ŠOLAR S., SHIELDS D., LANGER W., ANCIAUX P. 2007. Trajnostni razvoj in mineralne surovine za gradbeništvo: izbrana (evropska) vprašanja in primeri prakse [Sustainability and aggregates: selected (European) issues and cases]. RMZ-Materials and Geoenvironment. Vol. 54(3) p. 345–359. DOI 10.1016/j.jeca.2014.10.002.
SOMARATNE N. 2015. Karst aquifer recharge: A case history of over simplification from the Uley South basin, South Australia. Water. Vol. 7(2) p. 464–479.
SONG T., LIU Y., WANG Y. 2017. Finite element method for modeling 3D resistivity sounding on anisotropic geoelectric media. Mathematical Problems in Engineering. Art. ID 8027616. DOI 10.1155/2017/8027616. SZYDLARSKI M., MODRZYŃSKI J., STOPIŃSKI M., MAJEWSKI M., MARAS K. 2017. Comparing natural regeneration of Norway spruce Picea abies (L.) Karst. in the Kaszuby Lake District and in the other regions of northern Poland. Leśne Prace Badawcze / Forest Research Papers. Vol. 78(4) p. 303–314. DOI 10.1515/frp-2017-0034.
WANG X., ZHANG G., XU Y.J. 2016. Groundwater and surface water availability via a joint simulation with a double control of water quantity and ecologically ideal shallow groundwater depth: a case study on the Sanjiang Plain, northeast China. Water. Vol. 8(9), 396 pp. 23. DOI 10.3390/w8090396.

Go to article

Authors and Affiliations

Oleg R. Kuzichkin
1
ORCID: ORCID
Roman V. Romanov
2
ORCID: ORCID
Nikolay V. Dorofeev
2
ORCID: ORCID
Gleb S. Vasilyev
1
ORCID: ORCID
Anastasia V. Grecheneva
1
ORCID: ORCID

  1. Belgorod National Research University, 85 Pobedy St., 308015 Belgorod, Russia
  2. Vladimir State University, Vladimir, Russia
Download PDF Download RIS Download Bibtex

Abstract

The use of non-centralised water supply in remote settlements is currently the only possible option. Monitoring the wa-ter quality of such supply sources is a complicated task in such areas, especially when there are active karst processes and difficult groundwater conditions. The application of deterministic analytical models of water supply under the risk of dis-turbance to groundwater dynamics is not efficient. Significant quantitative and even qualitative changes in groundwater conditions may take place between the calculated points, and the underestimation of these changes in expectation-driven computation models may result in serious geoecological issues. This research studied and justifies the use of adaptive dy-namic hydrogeological control in an area of non-centralised water supply based on the identification of key zones of geo-dynamic karst monitoring and the electrical express-monitoring of water resources. The identification of key zones is based on an integrated analysis of available groundwater information that describes changes in groundwater hydrodynamic condi-tions at the time of the karst forecast. The development of karst-suffusion processes is accompanied by more intense dy-namic changes in local areas of geologic environment compared to the general variation in intensity. Information about the occurrence of destructive groundwater processes by means of selective geodynamic monitoring may thus be obtained much earlier than with environmental geodynamics monitoring as a whole. The experimental hydrogeological control of an area of non-centralised water supply was conducted on the right bank of the Oka River in Nizhny Novgorod region, a locality with an active manifestation of karst processes. Structure and algorithms of space-time processing of hydrogeological con-trol data developed by authors have been used. The approach based on multifrequency vertical electrical sounding (MFVES) method has shown good correspondence with direct borehole observation when measuring depth of the first aq-uifer. Zones of unsafe water use have been revealed. The results demonstrated the effectiveness of the proposed method and the need for further regular observations of destructive groundwater processes by means of selective hydrogeodynamic monitoring.

Go to article

Authors and Affiliations

Oleg R. Kuzichkin
ORCID: ORCID
Roman V. Romanov
ORCID: ORCID
Nikolay V. Dorofeev
ORCID: ORCID
Anastasia V. Grecheneva
ORCID: ORCID
Gleb S. Vasilyev
ORCID: ORCID

This page uses 'cookies'. Learn more