Search results

Filters

  • Journals
  • Authors
  • Contributor
  • Keywords
  • Date
  • Type

Search results

Number of results: 22
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Dyes and pigments are important organic pollutants of the water environment. Dyes may be removed from wastewater by using one of the most efficient methods for wastewater treatment-adsorption onto porous (natural and waste) minerals or organogenie substances. Feasibility of using smectite-clay, co-occurring in brown coal deposits, for removal of direct dyes was investigated. The Freundlich linear regression model was better in modeling of sorption direct dyes onto smectite-clay; it yielded better fit of the theoretical isotherm to the experimental data. The electrostatic interactions and hydrogen bonds were shown to play the most important role in adsorption of direct dyes onto smectite-clay.
Go to article

Authors and Affiliations

Joanna Kyzioł-Komosińska
Czesława Rosik-Dulewska
ORCID: ORCID
Marcin Jarzyna
Download PDF Download RIS Download Bibtex

Abstract

Odpady organiczne stanowią znaczny procent tego, co trafia na składowiska.plastiki Nie powinno tak być. Podobnie jak plastiki czy metale bioodpady to cenny surowiec wtórny.
Go to article

Authors and Affiliations

Czesława Rosik-Dulewska
Download PDF Download RIS Download Bibtex

Abstract

O odpadach, paliwach i stanie powietrza mówi prof. dr hab. inż. Czesława Rosik-Dulewska z Instytutu Podstaw Inżynierii Środowiska PAN i Katedry Ochrony Powierzchni Ziemi Uniwersytetu Opolskiego.

Go to article

Authors and Affiliations

Czesława Rosik-Dulewska
Download PDF Download RIS Download Bibtex

Abstract

W artykule przybliżono charakterystykę frakcji nadsitowej wytwarzanych w regionalnych instalacjach przetwarzania odpadów komunalnych. W lipcu 2013 roku wprowadzono zmiany do ustawy o czystości i porządku w gminie, które wdrożyły w Polsce nowy model gospodarki odpadami komunalnymi oparty na mechaniczno-biologicznym ich przetwarzaniu. Podstawowym elementem tego systemu są sortownie odpadów komunalnych, które są obecnie źródłem wytwarzania frakcji nadsitowej posiadającej własności paliwowe. Dla potrzeb rozpoznania jej właściwości autorzy artykułu przeprowadzili badania własne koncentrujące się na rozpoznaniu podstawowych własności energetycznych frakcji nadsitowej w poszczególnych sezonach roku wraz z rozróżnieniem rodzajów zabudowy. Przeprowadzono badania składu morfologicznego dla potrzeb określenia koncentracji frakcji energetycznych. Przeanalizowano stabilność jakościową strumienia frakcji nadsitowej pod względem możliwości energetycznego zagospodarowania w instalacjach termicznego przekształcania odpadów. Badania składu morfologicznego wykazały podwyższoną koncentrację frakcji energetycznych (papier, tworzywa sztuczne, tekstylia) w stosunku do zmieszanych odpadów komunalnych. Jednocześnie badania własności energetycznych wskazują na podwyższoną standaryzację energetyczną tej frakcji w rozkładzie czasowym (pory roku) oraz rozkładzie przestrzennym (zróżnicowany rodzaj zabudowy). Badania wykazały, że wartość opałowa w zbadanych próbkach zawiera się w przedziale 18,1–23,5 MJ/kg, gdzie wartość średnia wynosi 21,5 MJ/kg. Udział popiołu zawiera się natomiast w przedziale 11,8–24,1%, a udział części palnych 67,6–77,5%. Dobre własności paliwowe oraz standaryzacja jakościowa strumienia wskazują na możliwość stosowania rozwojowych technologii zgazowania odpadów zgodnie z nowymi przepisami dyrektywy IED (Dyrektywa 2010). Technologia zgazowania, produkcja syngazu i jego spalanie w silnikach tłokowych małej mocy stanowią obecnie interesującą alternatywę dla klasycznych instalacji termicznego przekształcania odpadów opartych na technologii spalania wpisując się w rozwój instalacji RIPOK i potrzebę wdrażania gospodarki w obiegu zamkniętym.

Go to article

Authors and Affiliations

Arkadiusz Primus
Czesława Rosik-Dulewska
Download PDF Download RIS Download Bibtex

Abstract

W artykule przedstawiono podstawowe uwarunkowania prawne i ekonomiczne dla możliwości rozwoju i wdrożeń instalacji zgazowania odpadów, produkcji energii elektrycznej i cieplnej w kogeneracji w układach małej mocy opartych na silnikach tłokowych. Wprowadzone w 2010 r. dyrektywą IED (Dyrektywa… 2010) nowe przepisy dotyczące technologii zgazowania odpadów wraz z implementacją do prawa krajowego w 2014 r. ustawą o odpadach (Ustawa… 2014) umożliwiły ich rozwój jako technik wysokosprawnych energetycznie oraz niskoemisyjnych. Stanowią one obecnie interesującą alternatywę dla klasycznych instalacji termicznego przekształcania odpadów opartych na technologii spalania. Kluczowym zagadnieniem dla rozwoju technologii zgazowania jest czystość wytwarzanego syngazu w ujęciu prawnym i technologicznym w szczególności w przypadku jego spalania w silnikach tłokowych. Z uwagi na brak spójnych przepisów dotyczących emisji zanieczyszczeń ze spalania syngazu w silnikach tłokowych zaproponowano możliwości ich interpretacji. W artykule przedstawiono również podstawowe uwarunkowania ekonomiczne i rynkowe w odniesieniu do krajowego modelu gospodarki odpadami. Wprowadzenie modelu gospodarki odpadami opartego na mechaniczno- biologicznym przetwarzaniu odpadów oraz zakazu składowania odpadów na właściwościach paliwowych wygenerowało problem oraz wzrost kosztów ich zagospodarowania. Konsekwencją jest możliwy wzrost rentowności instalacji zgazowania odpadów i produkcji energii w układach kogeneracyjnych małej mocy. Ponadto wskazano i opisano możliwe dostępne źródła przychodów dla takich wdrożeń w skali lokalnej.
Go to article

Authors and Affiliations

Arkadiusz Primus
Czesława Rosik-Dulewska
Download PDF Download RIS Download Bibtex

Abstract

Despite many technological possibilities, proper sanitation of sludge creates problems to their natural use. Thus, new solutions are still being looked for. Liming is one of the methods for sludge sanitation, however, rather expensive one. Seeking the substitute of high calcium content and non-toxic for environment has led to investigations on the application of mineral wastes - ashes from semi-dry sulfur removal from flue gases in the "Opole" power plant for sludge sanitation purposes. Ash was mixed with sludge in various proportions. After 3 days, the microbiological exams of the mixtures were carried out. The investigation data proved the performed sanitation effective and confirmed microbiological usability of the sludge for a natural use. The total contents of heavy metals and their distribution between particular fractions were determined in the sludge mixtures with mineral waste and in reference samples (i.e. sludge and mineral waste). No significant changes of metals proportion bound with biogenie fractions (fractions I- II) after addition of the mineral wastes to sludge were observed. Cadmium, zinc and partially chrome are bound with the iron and manganese oxides fraction (fraction III) which is sensitive to the redox potential changes. No significant change of contents was observed with the increase in a contribution of sludge or mineral waste. In all samples of the organic fraction (fraction IV) chrome and copper are bound in the highest amounts, and in the residue fraction (fraction V) cadmium, nickel and lead are bound, mainly. The investigation has showed that addition of optional proportions of sludge and mineral wastes mixtures into soil did not result in increase in heavy metals hazard. The investigation of the metals speciation in sludge and their mixtures with the mineral wastes showed similar metals distribution in individual fractions. The most hazardous elements for soil, water and plants such as lead, chrome, nickel, cadmium and zinc are bound in slightly soluble fractions and thus are hardly available to the ecosystem.
Go to article

Authors and Affiliations

Czesława Rosik-Dulewska
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

We discuss waste, fuels, and air quality with Prof. Czesława Rosik-Dulewska from the PAS Institute of Environmental Engineering and the Department of Land Protection at the University of Opole.

Go to article

Authors and Affiliations

Czesława Rosik-Dulewska
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Organic waste accounts for a significant percentage of what gets dumped into landfills, but that should not be the case. Like plastics or metals, biowaste represents a valuable secondary raw material.
Go to article

Authors and Affiliations

Czesława Rosik-Dulewska
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Soils that have been exposed to flood waters can be heavily polluted by inorganic and organic compounds. They are mainly compounds which appear in dissolved or suspended form flowing together with heavily laden floodwater, as well as compounds created as a result of reactions in the soil profile, mostly due to anaerobic transformation of organic matter. Heavy metals brought with flood waters are absorbed by the soil and also washed out from flood sediments by precipitation when the flood recedes. This paper presents the results of research on the effects of fertilization with ash from incineration or pyrolysis of biomass on the migration process of heavy metals (Zn, Cu, Cr, Ni, Pb, Cd, Mn) in the arable layer of soil. It has been shown that the metals in the flood sediment migrate actively in the soil profile what leads to the enrichment of the soils, also in the case of the soil fertilization with biomass ash.
Go to article

Authors and Affiliations

Czesława Rosik-Dulewska
Tomasz Ciesielczuk
Katarzyna Kochanowska
Download PDF Download RIS Download Bibtex

Abstract

In this study the current legal and market conditions of waste management in Poland are analyzed. The main legal basis for changes in the national municipal waste management system and their impact on the market situation in the last few years have been determined. Additionally, the important function of the selective collection and the key role of the separation of raw material fractions in waste sorting plants constituting the basis for the operation of Regional Municipal Waste Processing (RMWP) plants was underlined. Furthermore, the possibilities of developing electricity production technology in low and medium power modules using waste gasification techniques were emphasized. The stream of plastic mixture from municipal waste sorting was identified as problematic in the context of effective material recovery. Tests were conducted on the morphology of this waste stream from two sorting plants. In line with the literature data and as part of the analytical work, the properties of the plastic waste stream designated for recycling and the energy properties of the post-recycling plastic mixture were estimated. Tests results showed that the calorific value of this mixture reached 31.8 MJ/kg, whereas, ash and chlorine content equaled 2.7% and 1.1% of dry mass, respectively. These parameters indicate that the mixture as a high-calorific fuel component may be a valuable addition to refuse-derived fuel (RDF) produced from the over-sieve fraction of municipal waste. Concurrently, as a result of the development of waste gasification technologies with a high share of electricity production in low-medium power range plants, it is possible to integrate them with plastic recycling and RMWP plants in the Polish national waste management system.

Go to article

Authors and Affiliations

Arkadiusz Primus
Czesława Rosik-Dulewska
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The goal of the presented research works is to prove the following thesis: Does the process of contaminants reduction and effiuent application for arable land fertilization justify the treatment method of waste water from a yeast production facility in soil and plant environment. In order to achieve the above mentioned goal, basically the dynamics of physical and chemical properties change observed for waters, soils and plants irrigated with wastewater from yeast factory has been studied for many years. Part I presented the problems characteristics of production as well as water and wastewater management in the yeast factory, principles and technological effectiveness of the treatment of process wastewater from yeast production in soil - plant environment and impact of irrigation with wastewater on water purity. The research proved that very high biological treatment indices are achieved on the Silesian Yeast Factory fields where process wastewater is utilized i.e. concentration reduction for: BOD5 - 99.3% and COD - 99.7%, - for eutrophic compounds: N,0,.1 - 98.83%, P - 96.25% and K - 99.18%. The obtained percentage of concentration reduction is higher than the standards assumed in the water supply and wastewater discharge consent issued to the factory. The drainage water from the fields irrigated with yeast effluent is of I, II and III class of purity.
Go to article

Authors and Affiliations

Czesława Rosik-Dulewska
ORCID: ORCID
Ryszard Błaszków
Download PDF Download RIS Download Bibtex

Abstract

The goal of the presented research works was to prove the following thesis: Does the process of contaminants reduction and effluent application for arable land fertilization justify the treatment method of waste water from yeast production facility in soil and plant environment? In order to achieve the above mentioned goal, basically the dynamics of physical and chemical properties change observed for waters, soils and plants irrigated with wastewater from yeast factory has been studied for many years. Part II presents the problems connected with the impact of irrigation with wastewater from yeast factory on soil physical and chemical properties and on the quantity and quality of arable plants yield. Soils irrigated with process effluent from yeast factory show overfertilization with potassium. Also reduction of the organic carbon ratio to nitrogen is observed due to redundancy of potassium and deficit of organic carbon. Activities aimed at preventing reduction of organic substance consist in: straw, beet leaves and other solid organic waste ploughing. In industrial - grain crops rotation applied in the fields used for agricultural utilization of wastewater carried out in the research years of 1993-1997, an increase of yields (average for grain - by 13% and for root beet by 0.5-10.7%) was recorded. It was higher than in the case of yields produced on yeast production facility fields not irrigated with effluent and yields obtained by individual farmers from fields intensively treated only with mineral fertilizers. In comparison to the literature data the impact of irrigation with yeast effluent, the grain yields of winter wheat, spring barley and winter rape show slightly increased percentage contents of proteins, nitrogen, and potassium, whereas the contents of calcium and magnesium were smaller.
Go to article

Authors and Affiliations

Czesława Rosik-Dulewska
ORCID: ORCID
Ryszard Błaszków
Download PDF Download RIS Download Bibtex

Abstract

The goal of the study was to determine the risk posed to soil, groundwater and plants by the application of sewage sludge from a mechanical-biological wastewater treatment plant of nominal capacity of 46 000 m3/d. as fertilizer. Soil samples were collected from an agricultural and vegetable production farm. The leaching experiment was carried out in PCV lizymeters (with percolation water outlet). With respect to the chemistry and biology, the analyzed sludge meets the standards set up for sludge used for agricultural purposes. After 8, 16 and 24 weeks of simulated leaching with atmospheric precipitation, the lecheate from lizymeters showed changes in pH (increasing tendency), electrolytic conductivity (decreasing tendency) as well as slightly lowering content of heavy metals. Heavy metal speciation in sewage sludge showed that they occur in forms of compounds sparingly releasable to the soil solution (fractions III, IV, V). The analysis of sequential chemical extraction carried out in soil with applied sewage sludge, after 24 weeks treatment with simulated atmospheric precipitation doses showed similar heavy metal occurrence tendency as in the case of pure sludge. The total heavy metal content in fractions I-III amounted from 18,6% for Cr to 44,8% for Zn. The remaining content of heavy metals was basically bound with fraction V, which is completely unavailable for plants.
Go to article

Authors and Affiliations

Czesława Rosik-Dulewska
ORCID: ORCID
Mirosław Mikszta
Download PDF Download RIS Download Bibtex

Abstract

The research aim was to determine the long-term impact of the mine waste stored at the coal waste dump Hałda Ruda on the content of heavy metals in the bottom sediments of the Bytomka River. It is a watercourse flowing along this coal waste dump and has been under its influence for over fifty years. The research also attempted to determine the seasonality of changes (2 years) and mobility of selected elements.

The article presents total contents of Cr, Mn, Ni, Cu, Zn, As, Cd and Pb in the bottom sediments collected from the Bytomka River. It also focuses on the distribution of these elements in particular geochemical fractions determined with the Tessier's sequential chemical extraction procedure. Total element contents were determined with an EDPXRF (Energy Dispersive X-ray Fluorescence) technique. The extractants of particular Tessier's fractions were determined quantitatively with an ICP-MS (Inductively Coupled Plasma Mass Spectrometry) spectrometer. The research results show that the stored waste significantly influences the contents of heavy metals in the Bytomka River bottom sediments. The lowest concentration of heavy metals was observed at the B1 spot (above the dump), while the highest one was measured at the B3 spot (below the dump).

Sequential chemical extraction of the bottom sediments indicates that the Zn content in the ion-exchange and carbonate fractions diminished within a year. Nevertheless, Zn bound to Fe and Mn oxides acted in the opposite way. Mn, Zn and Pb are the most dangerous elements from the viewpoint of environmental hazards, as their total concentrations were high. Moreover, their high contents were observed in the most mobile (ion-exchange and carbonate) fractions. Extremely toxic Cd was bound to the oxide fraction to the largest extent. Cu was mainly bound to the organic fraction while environmentally hazardous Cr was bound to the residual fraction.

Go to article

Authors and Affiliations

Czesława Rosik-Dulewska
Magdalena Jabłońska-Czapla
Sebastian Szopa
Download PDF Download RIS Download Bibtex

Abstract

The introduction highlights the technologies of converting the chemical energy of biomass and municipal waste into various forms of final energy (electricity, heat, cooling, new fuels) as important in the pursuit of a low-carbon economy, especially for energy and transport sector. The work continues to focus mainly on gasification as a process of energy valorization of the initial form of biomass or waste, which does not imply that other methods of biomass energy use are not considered or used. Furthermore, the article presents a general technological flowchart of gasification with a gas purification process developed by Investeko S.A. in the framework of Lifecogeneration.pl. In addition, selected properties of the municipal waste residual fraction are described, which are of key importance when selecting the technology for its energy recovery. Significant quality parameters were identified, which have a significant impact on the production and quality of syngas, hydrogen production and electricity generation capacity in SOFC cells. On the basis of the research on the waste stream, a preliminary qualitative assessment was made in the context of the possibility of using the waste gasification technology, syngas production with a significant share of hydrogen and in combination with the technology of energy production in oxide-ceramic SOFC cells. The article presents configurations of energy systems with a fuel cell, with particular emphasis on oxide fuel cells and their integration with waste gasification process. An important part of the content of the article is also the environmental protection requirements for the proposed solution.
Go to article

Bibliography

  1. Al-attab, K.A. & Zainal, Z.A. (2015). Externally fired gas turbine technology: A review. Applied Energy, 138, pp. 474–487, DOI: 10.1016/j.apenergy.2014.10.049
  2. Andersson, M., Yuan, J. & Sunden, B. (2010). Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells. Applied Energy 87, pp. 1461–1476, DOI: 10.1016/j.apenergy.2009.11.013
  3. Regise, A., Muller, C., Schmid, M, Colomar, D., Ortloff, F., Sporl, R., Brisse, A. & Graf, F. (2019). Innovative power-to-gas plant concepts for upgrading of gasification bio-syngas through steam electrolysis and catalytic methanation. Energy Conversion and Management, 183, pp. 462–473. DOI: 10.1016/j.enconman.2018.12.101
  4. Bartela, Ł., Kotowicz, J. & Dubiel-Jurga, K. (2018). Investment risk for biomass integrated gasification combined heat and power unit with an internal combustion engine and a Stirling engine. Energy, 150, pp. 601 – 616. DOI: 10.1016/j.energy.2018.02.152
  5. Chmielniak, T. (2020). Energetyka wodorowa, s.378. PWN, Warszawa.
  6. Colpan, C. O., Hamdullahpur, F., Dincer, I. & Yoo, Y. (2010). Effect of gasification agent on the performance of solid oxide fuel cell and biomass gasification systems. I. J. of Hydrogen Energy, 35, pp. 5001 – 5009. DOI: 10.1016/j.ijhydene.2009.08.083
  7. Colpan , C.O. (2009). Thermal Modeling of Solid Oxide Fuel Cell Based Biomass Gasification Systems, Department of Mechanical and Aerospace Engineering Carleton University Ottawa, Ontario, Canada, (Thesis).
  8. Di Carlo, A., Borello, A. & Bocci, E. (2013). Process simulation of a hybrid SOFC/mGT and enriched air/steam fluidized bed gasifier power plant, I.J.of Hydrogen Energy, 38, pp. 5857-5874. DOI: 10.1016/j.ijhydene.2013.03.005
  9. Dong, L., Liu, H. & Riffat, S. (2009). Development of small-scale and micro-scale biomass fuelled CHP systems—a literature review. Appl Therm Eng, 29, pp.2119–26. DOI: 10.1016/j.applthermaleng.2008.12.004
  10. Integrated Emission Directive no. 2010/75/UE 24.11.2010.
  11. Fortunato B., Camporeale, S.M., Torresi, M. & Fornarelli, F. (2016). A Combined Power Plant Fueled by Syngas Produced in a Downdraft Gasifier, Proceedings of ASME Turbo Expo, GT2016-58159, V003T06A023. DOI: 10.1115/GT2016-58159
  12. Fryda, L., Panopoulos, K.D. & Kakaras, E. (2008). Integrated CHP with autothermal biomass gasification and SOFC–MGT. Energy Conversion and Management, 49, pp. 281–290. DOI: 10.1016/j.enconman.2007.06.013
  13. Götz, M., Lefebvre, J., Mörs, F., McDaniel Koch, A., Graf , F., Bajohr, S., Reimert,R. & Kolb, T., (2016). Renewable Power-to-Gas: A technological and economic review. Renewable Energy, 85, pp. 1371 – 1390. DOI: 10.1016/j.renene.2015.07.066
  14. Huang, Y., Wang, Y.D., Rezvani, S., McIlveen-Wright, D.R., Anderson, M., Mondol, J., Zacharopolous, A. & Hewitt, N. J. (2013). A techno-economic assessment of biomass fuelled trigeneration system integrated with organic Rankine cycle. Applied Thermal Engineering, 53, pp. 325 – 331. DOI: 10.1016/j.applthermaleng.2012.03.041
  15. Kupecki, J. (2018). Modelling, Design, Construction, and Operation of Power Generators with Solid Oxide Fuel Cells, s. 261. Springer.
  16. Kupecki, J. (2018). Selected problems of mathematical modeling of solid oxide fuel cell stacks during transient operation, p. 133. Wyd. Instytutu Technologii Eksploatacji, (in Polish)
  17. Kupecki, J., Skrzypkiewicz, M., Wierzbicki, M. & Stepien M. (2017). Experimental and numerical analysis of a serial connection of two SOFC stacks in a micro-CHP system fed by biogas. I.J. of Hydrogen Energy, 4, 2, pp. 3487 – 3497. DOI: 10.1016/j.ijhydene.2016.07.222
  18. Lian, Z.T., Chua, K.J. & Chou, S.K. (2010) A thermoeconomic analysis of biomass energy for trigeneration. Applied Energy, 87, pp. 84–95. DOI: 10.1016/j.apenergy.2009.07.003
  19. Maraver, D., Sin, A., Royo, J. & Sebastián, F. (2013). Assessment of CCHP systems based on biomass combustion for small-scale applications through a review of the technology and analysis of energy efficiency parameters. Applied Energy, 102, pp. 1303–1313. DOI: 10.1016/j.apenergy.2012.07.012
  20. Mathiesen, B.V., Lund, H., Connolly, D., Wenzel, H., Ostergaard, P.A., Moller, B., Nielsen, S., Ridjan, I., Karnoe, P., Sperling, K. & Hvelplund, F.K. (2015). Smart Energy Systems for coherent 100% renewable energy and transport solutions. Applied Energy, 145, pp. 139–154. DOI: 10.1016/j.apenergy.2015.01.075
  21. Mauro, A., Arpina, F., Massarotti, N. (2011). Three – dimensional simulation of heat and mass transport phenomena in planar SOFCs. I. J. of Hydrogen Energy, 36, pp. 10288 – 10301. DOI: 10.1016/j.ijhydene.2010.10.023
  22. Menon, V., Janardhanan, V.M., Tisher, S. & Deutschmann, O. (2012). A novel approach to model the transient behaviour of solid - oxide fuel cell stacks. J. of Power Sources, 214 pp. 227 – 238. DOI: 10.1016/j.jpowsour.2012.03.114
  23. Primus, A. & Rosik-Dulewska, C. (2018). Fuel potential of the over-sieve fraction of municipal waste and its role in the national model of waste management. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN, 105, pp.121-134. DOI:10.24425/124382 (in Polish)
  24. Primus, A. & Rosik-Dulewska, C. (2019). Integration of energy and material recovery processes of municipal plastic waste into the national waste management system. Polityka Energetyczna Energy Policy Journal, 22, 4, pp. 129–140. DOI: 10.33223/epj/114741
  25. Puig-Arnavat, M, Bruno, J.C. & Coronas, A. (2014). Modeling of trigeneration configurations based on biomass gasification and comparison of performance. Applied Energ,y 114 pp. 845–856. DOI:10.1016/j.apenergy.2013.09.013
  26. Kempegowda, R.S., Assabumrungrat, S. & Laosiripojana, N. (2009). Integrated CHP System Efficiency Analysis of Air, Mixed Air- Steam And Steam Blown Biomass Gasification Fuelled SOFC, Proc.of the IASIED International Conf. Modelling, Simulation, and Indentification. October 12 -14, 2009, Beijing, China
  27. Nikdalila, R., Azad, |A.T., Saghir, M., Taweekun, J., Bakar, M.S.A., Reza, M.S. & Azad, A.K. (2020). A review on biomass derived syngas for SOFC based combined heat and power application. Renewable and Sustainable Energy Reviews, 119, 109560. DOI: 10.1016/j.rser.2019.109560
  28. Rasmussen, J.F.B. & Hagen, A. (2011). The effect of H2S on the performance of SOFCs using methane containing fuel. Fuel Cell, 10, pp. 1135 – 1142. HAL Id: hal-00576976
  29. Salehi A., Mousavi, S.M., Fasihfar, A. & Ravanbakhsh, M. (2019). Energy, exergy, and environmental (3E) assessments of an integrated molten carbonate fuel cell (MCFC), Stirling engine and organic Rankine cycle (ORC) cogeneration system fed by a biomass-fueled gasifier. I. J. of Hydrogen Energy, 44, pp. 31488-31505. DOI: 10.1016/j.ijhydene.2019.10.038
  30. Skorek J. & Kalina J. (2005). Gas cogeneration systems; Wydawnictwo Naukowo-Techniczne; Warszawa, 2005 r. (in Polish)
  31. Sipilä, K., Pursiheimo, E., Savola, T., Fogelholm, C.J., Keppo, I. & Pekka A. (2005). Small Scale Biomass CHP Plant and District Heating. Vtt Tiedotteita . Research Notes 2301, Valopaino Oy, Helsinki, 2005. http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2301.pdf
  32. Ściążko, M. & Nowak, W. (2017). Municipal waste gasification technologies. Nowa Energia 1. technologie_zgazowania_odpadow_komunalnych_1.pdf (cire.pl)
  33. Thilak, N., Iniyan, R.S. & Goic, R. (2011). A review of renewable energy based cogeneration technologies. Renewable and Sustainable Energy Reviews, 15, pp. 3640–3648. DOI: 10.1016/j.rser.2011.06.003
  34. Uebbinga, M., Liisa, M., Rihko-Struckmanna, K. & Sundmachera, K. (2019). Exergetic assessment of CO2 methanation processes for the chemical storage of renewable energies. Applied Energy, 233–234, pp. 271–282. DOI: 10.1016/j.apenergy.2018.10.014
  35. Wielgosiński, G. (2020). Thermal waste conversion, Nowa Energia; Racibórz 2020 r. (in Polish)
  36. Wongchanapai, S., Iwai, H., Saito, M. & Yoshida, H. (2012). Performance evaluation of an integrated small-scale SOFC-biomass gasification power generation system. Journal of Power Sources, 216, pp. 314 – 322. DOI: 10.1016/j.jpowsour.2012.05.098
  37. Zhang W., Croiset, E., Douglas, P.L., Fowler, M.W & Entchev, E. (2005). Simulation of a tubular solid oxide fuel cells stack using Aspen PlusTM unit operation models. Energy Conversion and Management, 46, pp. 181 – 196. DOI: 10.1016/j.enconman.2004.03.002
Go to article

Authors and Affiliations

Arkadiusz Primus
1
Tadeusz Chmielniak
2
Czesława Rosik-Dulewska
3
ORCID: ORCID

  1. INVESTEKO S.A.
  2. Silesian University of Technology, Faculty of Energy and Environmental Engineering, Institute of Power Engineering and Turbomachinery, Poland
  3. Institute of Environmental Engineering, Polish Academy of Sciences, Poland
Download PDF Download RIS Download Bibtex

Abstract

Deposits used as fertilizer bring to soil both biogens necessary for plant growth and other ingredients such as metals. including heavy metals. Knowledge of quantities and rate in which heavy metals are to be released to soil from granulates is important because of their toxic influence on plants (in the case of high metals concentration). This paper presents results of investigation of elution of Cu. Zn, Ni, Cd, Pb. and Cr from granulates prepared from municipal sewage sludge, hard coal ash and brown coal ash. Elution to water solution was carried out in static conditions with single-stage and tree-stage extraction. Heavy metal a component of sludge-ash granulates eluted in various quantities, i.e. from trace for cadmium to 9.26-9.53 mg/kg of d.m. for zinc. Among the soluble forms of metals the most mobile are (in decreasing sequence): Cu > Pb> Zn> Ni in granulates containing brown coal ash and Cu> Pb> Ni> Zn in granulates contain hard coal ash.
Go to article

Authors and Affiliations

Czesława Rosik-Dulewska
ORCID: ORCID
Katarzyna Głowala
Urszula Karwaczyńska
Jolanta Robak
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper is to present characteristics, toxicity and environmental behavior of nanoparticles (NPs) (silver, copper, gold, zinc oxide, titanium dioxide, iron oxide) that most frequently occur in consumer products. In addition, NPs are addressed as the new aquatic environmental pollutant of the 21st century. NPs are adsorbed onto particles in the aquatic systems (clay minerals, fulvic and humic acids), or they can adsorb environmental pollutants (heavy metal ions, organic compounds). Nanosilver (nAg) is released from consumer products into the aquatic environment. It can threaten aquatic organisms with high toxicity. Interestingly, copper nanoparticles (Cu-NPs) demonstrate higher toxicity to bacteria and aquatic microorganisms than those of nanosilver nAg. Their small size and reactivity can cause penetration into the tissues and interfere with the metabolic systems of living organisms and bacterial biogeochemical cycles. The behavior of NPs is not fully recognized. Nevertheless, it is known that NPs can agglomerate, bind with ions (chlorides, sulphates, phosphates) or organic compounds. They can also be bound or immobilized by slurry. The NPs behavior depends on process conditions, i.e. pH, ionic strength, temperature and presence of other chemical compounds. It is unknown how NPs behave in the aquatic environment. Therefore, the research on this problem should be carried out under different process conditions. As for the toxicity, it is important to understand where the differences in the research results come from. As NPs have an impact on not only aquatic organisms but also human health and life, it is necessary to recognize their toxic doses and know standards/regulations that determine the permissible concentrations of NPs in the environment.

Go to article

Authors and Affiliations

Iwona Krzyżewska
Czesława Rosik-Dulewska
Joanna Kyzioł-Komosińska
Justyna Czupioł
Patrycja Antoszczyszyn-Szpicka
Download PDF Download RIS Download Bibtex

Abstract

The problem of the migration of metal ions in the environment remains a current problem in light of the quality of obtained crops. The necessity of more and more frequent use of alternative sources of biogens in the form of waste substances, poses a threat of loading significant amounts of metals into the soil – including heavy metals harmful to human health and life. The article discusses a significant problem, namely the comparison of the results of the environmental impact of waste, obtained on the basis of legally authorized leaching tests (three-stage leaching test according to PN-EN 12457:2006), with results obtained from sequential chemical extraction (performed in 4-step chemical extraction developed and recommended in European Union countries by Communities Bureau of References – BCR). The study covered an investigation of industry fly ash from the combustion of lignite, in which Cu, Zn, Cd, Ni, Pb, Cr, Na, K, Li concentrations and loads were calculated. A mobility of analyzed elements was established on this basis. From heavy metals, the highest values in fraction I were noted for nickel and copper and zinc as well as nickel were noted for fraction IV . Peaking values of electrolytic conductivity in eluates was created by high concentrations of macroelements (Na and K). These tests confirm that the leaching tests used for their application in the natural environment indicate such concentrations at the highest levels that can be obtained at the first or second stage of sequential chemical extraction, and thus their proper full environmental impact is not known.

Go to article

Authors and Affiliations

Czesława Rosik-Dulewska
ORCID: ORCID
Urszula Karwaczyńska
Tomasz Ciesielczuk
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Currently, due to reduced water resources, there is a need to build reservoirs in Poland. Reservoirs perform important economic, natural and recreational functions in the environment, improve water balance and contribute to fl ood protection. In the construction of reservoirs, it is necessary to consider not only hydrological issues related to water quantity, but also its quality, silting, and many other factors. Therefore, the physiographic, hydrological, hydrochemical, and hydrogeological conditions of the projected reservoirs have to be taken into account to limit the potential negative eff ects of decisions to build them. In order to assess the suitability of eight projected small water retention reservoirs (to increase water resources in the Barycz River catchment in Lower Silesia and Greater Poland provinces, this article takes into account hydrological indicators (efficiency of the reservoir, operation time, dependence on the intensity of silting, and flood hazard indicator), water quality (phosphorus load and nitrogen load), hydrogeological conditions (type of geological substratum for the reservoir basin and filtration losses), and safety of the reservoir dam. To develop a theoretical model describing the regularities between the indicators, multivariate statistical techniques were used, including the Principal Component Analysis (PCA) and the Factor Analysis (FA). In order to assess the reservoirs, a synthetic indicator was developed to compare the reservoirs with each other in relation to the conditions. The Cluster Analysis (CA) was used for typological classification of homogeneous locations of projected small retention reservoirs. Own research procedure for identification of the most advantageous water reservoirs, with the use of multivariate statistical techniques, may be used as a tool supporting decision making in other facilities intended for implementation in provincial projects of small retention.
Go to article

Bibliography

1. Adamski, W., Gortat, J., Leśniak, E. & Żbikowski, A. (1986). Small water construction for the villages. Arkady, Warszawa (in Polish).
2. Bănăduc, D., Razvam, V., Marić, S., Dobre, A. & Bănăduc, A. (2018). Technical Solutions to Mitigate Shifting Fish Fauna Zones Impacted by Long Term Habitat Degradation in the Bistra Mărui River – Study Case, Transylvanian Review of Systematical and Ecological Research, 20(3). DOI: 10.2478/trser-2018-0021.
3. Bartnik, A. & Jokiel, P. (2007). Maximum outflows and flood indexes for European rivers, Water Management/Gospodarka Wodna, (1), pp. 28–32 (in Polish).
4. Baumgartner, M. T., Piana, P. A., Baumgartner, G. & Gomes, L. C. (2019). Storage or Run-of-river Reservoirs: Exploring the Ecological Effects of Dam Operation on Stability and Species Interactions of Fish Assemblages, Environmental Management, DOI: 10.1007/s00267-019-01243-x.
5. Bierman, P. & Steig, E.J. (1996). Estimating rates of denudation using cosmogenic isotope abundances in sediment, Earth Surface Processes and Landforms, 21(2). DOI: 10.1002/(SICI)1096-9837(199602)21:2125::AID-ESP511>3.0.CO;2-8.
6. Bogdał A., Kowalik, T. & Witoszek, K. (2015). Impact of the Goczałkowicki reservoir on changes in water quality in the Vistula River. Inżynieria Ekologiczna, 45, pp. 2015, 124–134, DOI: 10.12912/23920629/60605 (in Polish).
7. Bogdał A., Policht-Latawiec, A. & Kołdras, S. (2015). Changes of Water Quality Indices with Depth at Drinking Water Intake from Dobczyce Reservoir. Annual Set the Environment Protection, 17, pp. 1239–1258 (in Polish).
8. Boyacioglu, H. (2006). Surface water quality assessment using factor analysis. Water SA, 32(3), pp. 389–393. DOI: 10.4314/wsa.v32i3.5264.
9. Boyacioglu, H. (2014). Spatial differentiation of water quality between reservoirs under anthropogenic and natural factors based on statistical approach. Archives of Environmental Protection, 40(1), 41–50, DOI: 10.2478/Aep-2014-0002.
10. Boyacioglu, H., & Boyacioglu, H. (2008). Water pollution sources assessment by mul-tivariate statistical methods in the Tahtali Basin. Turkey, Environmental Geology, 54(2), 275–282, DOI 10.1007/s00254-007-0815-6.
11. Bus, A. & Mosiej, J. (2018). Water Quality Changes of Inflowing and Outlawing Water from Complex of Niewiadoma Reservoirs Located at Cetynia River. Annual Set The Environment Protection, 20, pp. 1793–1810 (in Polish).
12. Byczkowski, A. (1999). Hydrology, vol. 1, ed. 2. SGGW Publishing House, Warszawa (in Polish).
13. Carlson, R.E. & Simpson, J. (1996). A Coordinator’s Guide to Volunteer Lake Monitoring Methods. North American Lake Management Society.
14. Chłopek, D. (2018). Multi-criteria analysis of the possibility of implementing small water reservoirs in the Barycz river basin. Diploma thesis, Faculty of Environmental Engineering and Geodesy, Wrocław University of Environmental and Life Sciences, pp. 65 (in Polish).
15. Chongxun, M., Fanggui, L. Mei, Y., Rongyong, M. & Guikai, S. (2008), Risk analysis for earth dam overtopping, Water Science and Engineering, 1(2), pp. 76-87, DOI: 10.3882/j.issn.1674-2370.2008.02.008.
16. Ciepielowski, A. (1999). Basics of water management. Publisher SGGW, Warszawa, pp. 328 (in Polish).
17. Cupak, A., Wałęga, A. & Michalec, B. (2017). Cluster analysis in determination of hydrologically homogeneous regions with low flow, Acta Scientiarum Polonorum Formatio Circumiectus, 16(1), pp. 53–63. DOI: 10.15576/ASP.FC/2017.16.1.53
18. Cymes, I. & Glińska-Lewczuk, K. (2016). The use of Water Quality Indices (WQI and SAR) for multipurpose assessment of water in dam reservoirs. J. Elem., 21(4): 1211-1224, DOI: 10.5601/jelem.2016.21.2.1200.
19. Czamara, W., Czamara, A. & Wiatkowski, M. (2008). The use of predams with plants filters to improve water quality in storage reservoirs, Archives of Environmental Protection, 34, pp. 79-89.
20. Degoutte, G. (ed.). (2002). Small dams, guidelines for design, construction and monitoring. Cemagref Éditions and ENGREF (France), with French Committee on Large Dams.
21. Degórski, M. (2018). Circular economy – a new approach in the understanding of the human–environment relationship, [in:] Theoretical and application challenges of contemporary geography socioeconomic, P. Churski (ed.), Studia Komitetu Przestrzennego Zagospodarowania Kraju, Polska Akademia Nauk, Tom CLXXXIII, Warszawa, pp. 27-35 (in Polish).
22. Dodds, W.K. & Smith, V.H. (2016). Nitrogen, phosphorus, and eutrophication in streams, Inland Waters, 6(2), pp. 155-164, DOI: 10.5268/IW-6.2.909.
23. Dziewoński, Z. (1973). Agricultural storage reservoirs, PWN Publisher (in Polish).
24. DZMiUW Wrocław (2006). Small water retention program in the Lower Silesian Voivodship. Study prepared by Agricultural University of Wroclaw - Hydrological Process Modeling Center (in Polish).
25. EPA – Environmental Protection Agency (1974). An approach to a relative trophic index system for classifying lakes and reservoirs. Working Paper, 24.
26. FitzHugh, T. W., & Vogel, R. M. (2010). The impact of dams on flood flows in the United States, River Research and Applications, 27(10), pp. 1192–1215, DOI: 10.1002/rra.1417.
27. Gaupp, F., Hall, J., & Dadson, S. (2015). The role of storage capacity in coping with intra- and inter-annual water variability in large river basins, Environmental Research Letters, 10(12), 125001, DOI: 10.1088/1748-9326/10/12/125001.
28. GIOŚ (2018) Corine Land Cover – Land Cover / Land Use Database. Chief Inspec-torate for Environmental Protection (GIOŚ).
29. Grimard, Y. & Jones, H.G. (2011). Trophic Upsurge in New Reservoirs: A Model for Total Phosphorus Concentrations, Canadian Journal of Fisheries and Aquatic Sciences, 39(11), pp. 1473-1483, DOI: 10.1139/f82-199.
30. Gruss Ł. & Wiatkowski M. (2018). Rainfall models in small catchments in the context of hydrologic and hydraulic assessment of watercourses. ECO CHEM ENG A. 25(1): 19-27, DOI: 10.2428/ecea.2018.25(1)2.
31. Ignatius, A. R., & Rasmussen, T. C. (2016). Small reservoir effects on headwater wa-ter quality in the rural-urban fringe, Georgia Piedmont, USA, Journal of Hydrolo-gy: Regional Studies, 8, pp. 145–161, DOI: 10.1016/j.ejrh.2016.08.005.
32. Junakova, N. & Junak, J. (2017). Sustainable Use of Reservoir Sediment through Par-tial Application in Building Material, Sustainability, 9(5), DOI: 10.3390/su9050852. 33. Kajak, Z. (2001). Hydrobiology - limnology. Inland water ecosystems. PWN Publisher, Warszawa (in Polish).
34. Kałuża, T., Zawadzki, P., Mądrawski, J., Stasik, R. (2017). Analysis of impact of Strużyna reservoir modernization on groundwater level. Acta. Sci. Pol., Formatio Circumiectus, 16(3), 153–169 (in Polish).
35. Karimian, E., Modares, R., Soltani S., Eslamian S., Ostad-Ali-Askari, K., Vijay, P.S & Dalezios, N.R. (2018). Multivariate and Cluster Analysis of Hydrologic Indices: A Case Study of Karun Watershed, Khuzestan Province, Iran, International Journal of Research Studies in Science, Engineering and Technology, 5(2), pp. 4-13
36. Kasperek R., Wiatkowski M. & Czamara W. (2007). Assessment of sediment transport flowing into the Mściwojów water reservoir. Infrastructure and Ecology of Rural Areas, 4, 2, pp. 69-76 (in Polish).
37. Kasperek, R., Mokwa, M. & Wiatkowski, M. (2013). Modelling of pollution transport with sediment on the example of the Widawa River, Archives of Environmental Protection, 39(2), pp. 29-43, DOI: 10.2478/aep-2013-0017.
38. Khaba, L. & Griffiths, J.A. (2017). Calculation of reservoir capacity loss due to sedi-ment deposition in the `Muela reservoir, Northern Lesotho, International Soil and Water Conservation Research, 5 (2), pp. 130-140. DOI: 10.1016/j.iswcr.2017.05.005.
39. Kubicz, J., Lochynski,, P., Pawełczyk, A. & Karczewski, M. (2021). Effects of drought on environmental health risk posed by groundwater contamination. Chemosphere, 263, 128145, DOI: 10.1016/j.chemosphere.2020.128145.
40. Kostecki, M., Tytła, M., Kernert, J. & Stahl, K. (2017). Temporal and spatial variability in concentrations of phosphorus species under thermal pollution conditions of a dam reservoir – the Rybnik Reservoir case study, Archives of Environmental Protection, 43(3), pp. 42–52, DOI: 10.1515/aep-2017-0022.
41. Kowalewski, Z. (2008). Actions for small water retention undertaken in Poland. J. Water. Land. Dev. No. 12, pp. 155–167.
42. Kundzewicz, Z.W., Ulbrich, U., Brücher, T. et al. (2005). Summer Floods in Central Europe – Climate Change Track?, Natural Hazards, 36, 165–189. DOI: 10.1007/s11069-004-4547-6
43. KZGW (National Water Management Authority) 2017. Hydrographic Map of Poland. Available online: https://danepubliczne.gov.pl/dataset/komputerowa-mapa-podzialu-hydrograficznego-polski (accessed on: 05.12.2017).
44. Laacha, G. & Blöschl, G. (2006). A comparison of low flow regionalisation methods – catchment grouping, Journal of Hydrology, 323, pp. 193–214. DOI: 10.1016/j.jhydrol.2005.09.001.
45. Łabaz, B., Bogacz, A. & Kabała, C. (2014). Anthropogenic transformation of soils in the Barycz valley –conclusions for soil classification, Soil Science Annual, 65(3/2014), pp. 103-110. DOI: 10.1515/ssa-2015-0001.
46. Larinier, M. (2008). Fish Passage Experience at Small-Scale Hydro-Electric Power Plants in France, Hydrobiologia, 609(1). DOI: 10.1007/s10750-008-9398-9.
47. Lewis, S.E., Bainbridge, Z.T., Kuhnert, P.M., Sherman, B.S., Henderson, B., Dougall, C., Cooper, M. & Brodie, J.E. (2013). Calculating sediment trapping efficiencies for reservoirs in tropical settings: A case study from the Burdekin Falls Dam, NE Australia, Water Resources Research, 49(2), pp. 1017-1029. DOI: 10.1002/wrcr.20117.
48. Lindsey, C.R., Ghanashym, N., Spycher, N., Fairley, J.P., Dobson, P., Wood, T., McLing, T. & Conrad, M. (2018). Cluster analysis as a tool for evaluating the exploration potential of Known Geothermal Resource Areas, Geothermics, 72, pp. 358-370. DOI: 10.1016/j.geothermics.2017.12.009
49. Ling, T.Y., Soo, C-L, Liew, J-J., Nyanti, L, Sim, S.F. & Grinang, J. (2017). Application of multivariate statistical analysis in evaluation of surface river water quality of a tropical river J. Chemother., pp. 1-13, DOI: 10.1155/2017/5737452
50. Madeyski M., Michalec, B. & Tarnawski, M. (2008). Silting of small water reservoirs and quality of sediments, Infrastructure and Ecology of Rural Areas, 11 (monography; in Polish).
51. Maloney, T.E. (1979). Lake and Reservoir Classification Systems. United States Environmental Protection Agency.
52. Mansanarez, V., Westerberg, I.K., Lam, N. & Lyon, S.W. (2019). Rapid Stage‐Discharge Rating Curve Assessment Using Hydraulic Modeling in an Uncertainty Framework, Water Resources Research, 55(11). DOI: 10.1029/2018WR024176.
53. Marcinkowski, P., Piniewski, M., Kardel, I., Szczęśniak, M., Benestad, R.E., Sriniva-san, R., Ignar, S. & Okruszko, T. (2017). Effect of Climate Change on Hydrology, Sediment and Nutrient Losses in Two Lowland Catchments in Poland, Water, 9, 156, DOI: 10.3390/w9030156.
54. Markowska, J., Szalińska, W., Dąbrowska, J. & Brząkała, M. (2020). The concept of a participatory approach to water management on a reservoir in response to wicked problems. J. Environ. Manage. 259:109626. DOI: 10.1016/j.jenvman.2019.109626
55. Melo, D.C.D., Scanlon, B.R., Zhang, Z., Wendland, E. & Yin, L. (2016). Reservoir storage and hydrologic responses to droughts in the Paraná River basin, south-eastern Brazil, Hydrology and Earth System Sciences, 20, pp. 4673-4688, DOI: 10.5194/hess-20-4673-2016.
56. MGMiŻG, (2019a), Regulation of the Minister of Maritime Economy and Inland Navigation of 11 October 2019 on the classification of ecological status, ecological potential and chemical status and the method of classifying the status of surface water bodies as well as environmental quality standards for priority substances, OJ 2019, item 2149 (in Polish).
57. MGMiŻG, (2019b), Ministry of Maritime Economy and Inland Navigation. Assumptions for the Program for Combating Water Shortage for 2021-2027 with a perspective to 2030. Project, Warszawa, pp. 19 (in Polish).
58. Miąsik M., Koszelnik P. & Bartoszek L. (2014). Trophic water assessment of the small retention reservoirs Blizne and Cierpisz in the Podkarpacie Region (Subcarpathian Province), Limnol. Rev. , 14(, 4), pp. 181-186. DOI 10.1515/limre-2015-0008.
59. Michalec, B., Wałęga, A., Cupak, A., Michalec, A. & Połoska-Wróblel, A. (2016). Determination of the flow rate curve in the back section of water reservoirs in Zesławice. Acta Scientiarum Polonorum Formatio Circumiectus, 15(1), pp. 113–124.
60. Mioduszewski, W. (2014). Water management in rural areas in the light of new challenges. Wiadomości Melioracyjne i Łąkarskie, 1, pp. 2-9 (in Polish).
61. Mioduszewski, W. (2014). Small (natural) water retention in rural areas. J. Water. Land. Dev., No. 20 (I–III), pp. 19–29.
62. Mosisch, T.D. & Arthington, A. (2006). The impacts of power boating and water ski-ing on lakes and reservoirs, Lakes & Reservoirs Research & Management, 3(1), pp. 1-17, DOI: 10.1111/j.1440-1770.1998.tb00028.x.
63. Moss, B. (2007). The art and science of lake restoration, Hydrobiologia, 581, pp. 15-24. DOI: 10.1007/s10750-006-0524-2.
64. Myronidis, D., Fotakis, D., Ioannou, K. & Sgouropoulou, K. (2018). Comparison of ten notable meteorological drought indices on tracking the effect of drought on streamflow. Hydrological Science Journal, DOI: 10.1080/02626667.2018.1554285
65. Myronidis, M. & Ivanova, E. (2020). Generating Regional Models for Estimating the Peak Flows and Environmental Flows Magnitude for the Bulgarian-Greek Rhodope Mountain Range Torrential Watersheds, Water, 12, 784. DOI: 10.3390/w12030784
66. National Water Policy Project (2011) until 2030 (including the stage of 2016), Ministry of the Environment, National Water Management Authority, Warszawa, pp. 74 (in Polish).
67. O’Keeffe, J., Marcinkowski, P., Utratna, M., Piniewski, M., Kardel, I., Kundzewicz, Z.W. & Okruszko, T. (2019). Modelling Climate Change’s Impact on the Hydrology of Natura 2000 Wetland Habitats in the Vistula and Odra River Basins in Poland. Water, 11, 2191, DOI: 10.3390/w11102191.
68. Özdemir, Ö. (2016). Application of multivariate statistical methods for water quality assessment of Karasu Sarmisakli Creeks and Kizilirmak River in Kayseri, Turkey. Polish Journal of Environmental Studies, 25 (3), 1149.
69. Panek, T. & Zwierzchowski, J. (2013). Statistical methods of multivariate compara-tive analysis. Theory and applications, SGH Publishing House, Warszawa, pp. 400 (in Polish).
70. Paruch, A.M., Mæhlum, T. & Robertson, L. (2015). Changes in Microbial Quality of Irrigation Water Under Different Weather Conditions in Southeast Norway. Environ. Process. 2, pp. 115–124. DOI: 10.1007/s40710-014-0054-2
71. Pazdro, Z. & Kozerski, B. (1990). General hydrogeology, Geological Publishing, Edition 4th, Warszawa (in Polish).
72. Pejman, A.H., Nabi Bidhendi, G.R., Karbassi, A.R., Mehrdadi, N. & Esmaeili Bidhendi, M. (2009). Evaluation of spatial and seasonal variations in surface water quality using multivariate statistical techniques, International Journal of Environmental Science and Technology, 6, 3, pp. 467–476. DOI: 10.1007/BF03326086.
73. Przybyła, C., Kozdroj, P. & Sojka, M. (2015). Application of Multivariate Statistical Methods in Water Quality Assessment of River-reservoirs Systems (on the Example of Jutrosin and Pakoslaw Reservoirs, Orla Basin), Annual Set the Environment Protection, 17(2), pp. 1125-1141.
74. Rao, A.R. & Srinivas, V.V. (2008). Regionalization of Watersheds. An approach based on cluster analysis. Springer, New York.
75. Sakamoto, M. (1966). Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth, Archiv für Hydrobiologie, 62, pp. 1–28.
76. Sand-Jensen, K., Bruun, H.H. & Baastriup-Spohr, L. (2016). Decade‐long time delays in nutrient and plant species dynamics during eutrophication and re‐oligotrophication of Lake Fure 1900–2015, Journal of Ecology, 105(3), DOI: 10.1111/1365-2745.12715.
77. Schiozer, D.J, Ligero, E.L. & Santos, J.A.M. (2004). Risk assessment for reservoir de-velopment under uncertainty, Journal of the Brazilian Society of Mechanical Sci-ences and Engineering, 26(2), DOI: 10.1590/S1678-58782004000200014.
78. Shrestha, S. & Kazama, F. (2007). Assessment of Surface Water Quality using Multi-variate Statistical Techniques: A Case Study of the Fuji River Basin, Japan. Environmental Modelling & Software, 22(4), 464–475, DOI: 10.1016/j.envsoft.2006.02.001.
79. Singh, K. P., Malik, A., Singh V. K., Mohan, D. & Sinha, S. (2005). Chemometric Da-ta Analysis of Pollutants in wastewater - a Case Study. Analytica Chimica Ac-ta, 550, 82–91. DOI: 10.1016/j.aca.2004.10.043.
80. Sojka, M., Jaskuła, J., Siepak, M. (2019). Article Heavy Metals in Bottom Sediments of Reservoirs in the Lowland Area of Western Poland: Concentrations, Distribution, Sources and Ecological Risk, Water, 11, 56, DOI: 10.3390/w11010056.
81. Stathis, D., Myronidis, D. (2009). Principal component analysis of precipitation in Thessaly region (Central Greece). Global NEST Journal, Vol. 11 (4), pp. 467-476,
82. StatSoft, Electronic Statistics Textbook. 2011. Available on: https://www.statsoft.pl/textbook/stathome.html (accessed on January 2020).
83. Szatten, D., Habel, M., Pellegrini, L. & Maerker, M. (2018). Assessment of Siltation Processes of the Koronowski Reservoir in the Northern Polish Lowland Based on Bathymetry and Empirical Formulas, Water, 10, 1681. DOI: 10.3390/w10111681.
84. Szoszkiewicz K., Wicher-Dysarz J., Sojka, M. & Dysarz, T. (2016). Assessment of hydraulic, hydrological and physicochemical factors affecting vegetation development in dam reservoir with separated inlet zone - stare miasto (Central Poland) reservoir as a case study. Fresenius Environmental Bulletin. Vol. 25, No.( 8), pp. 2772-2783.
85. Tallar, R. & Suen, J-P. (2017). Measuring the Aesthetic Value of Multifunctional Lakes Using an Enhanced Visual Quality Method, Water, 9(4), DOI: 10.3390/w9040233.
86. Tokarczyk-Dorociak, K., Gębarowski, S. (2011). Implementation of Water Frame-work Directive in Barycz river basin,. Infrastruktura i Ekologia Terenów Wiejskich 10, pp. 15-27 (in Polish).
87. Tokarczyk, T. & Szalińska, W. (2018). Drought hazard assessment in the process of drought risk management . Acta Sci. Pol., Formatio Circumiectus, 18(3), 217–229. DOI: 10.15576/ASP.FC/2018.17.3.217.
88. Varol, M., Gökot, B., Bekleyen, A. & Şen, B. (2012). Water quality assessment and apportionment of pollution sources of Tigris river (Turkey) using multivariate statistical techniques – a case study, River Research and Applications, 28, pp. 1428–1438, DOI: 10.1002/rra.1533.
89. Vollenweider, R.A. (1965). Material and ideas for a hydrochemistry of water, Memorie dell'Istituto Italiano di Idrobiologia, 19, pp. 213-286 (in Italian).
90. Vollenweider, R.A. (1992). The relationship between phosphorus load and eutrophication response in Lake Vanda, Physical and Biogeochemical Processes in Antarctic Lakes, 59, DOI: 10.1029/AR059p0197.
91. Voza, D., Vuković, M., Takić, L.J., Nikolić, D.J. & Mladenović-Ranisavljević, I. (2015) Application of multivariate statistical techniques in the water quality assessment of Danube river, Serbia. Archives of Environmental Protection, 41(4), pp. 96–103. DOI 10.1515/aep-2015-0044.
92. Waligórski B., Sojka M., Jaskuła J. & Korytowski M. (2018). Analysis of the use of se-lected reservoirs in the Wielkopolska province. Ann. Warsaw Univ. of Life Sci. – SGGW, Land Reclam. 50 (4), 2018). DOI: 10.2478/sggw-2018-0029.
93. Wiatkowska, B. & Słodczyk, J. (2018). Spatial Diversity of Environmental Govern-ance in the Aspect of Sustainable Development of the Polish-Czech Border Area, [in:] Development and administration of border areas of the Czech Republic and Poland. Support for sustainable development, VŠB – Technical University of Ostrava, pp. 292–301. https://repo.uni.opole.pl/docstore/download/UO08212fce5a4b44c88b513175db404927/WiatkowskaB-SlodczykJ-SpatialDiversity.pdf
94. Wiatkowski, M. & Paul, L. (2009). Surface water quality assessment in the Troja river catchment in the context of Włodzienin reservoir construction. Polish Journal of Environmental Studies,. Vol. 18, 5, pp. 923-929.
95. Wiatkowski, M. & Czerniawska-Kusza, I. (2009). Use of Jedlice preliminary reservoir for water protection of Turawa dam reservoir. Oceanological and Hydrobiological Studies, vol. XXXVIII, 1, pp. 83-91.
96. Wiatkowski, M. (2010). Impact of the small water reservoir Psurów on the quality and flows of the Prosna river. Archives of Environmental Protection, vol. 36, 3, pp. 83-96.
97. Wiatkowski, M., Rosik-Dulewska, C., Kuczewski, K. & Kasperek, R. (2013). Water Quality Assessment of Włodzienin Reservoir in the First Year of Its Operation, Annual Set The Environment Protection, 15(3), pp. 2666-2682 (in Polish).
98. Wiatkowski M., Rosik-Dulewska, C. & Kasperek R. (2015). Inflow of Pollutants to the Bukówka Drinking Water Reservoir from the Transboundary Bóbr River Basin. Annual Set The Environment Protection, 17, pp. 316-336.
99. Wiatkowski, M., & Rosik-Dulewska, C. (2015). Water management problems at the Bukówka drinking water reservoir's cross-border basin area in terms of its established functions. J. Ecol. Eng. , 16(2), pp. 52–60. DOI: 10.12911/22998993/1857.
100. Wiatkowski, M., Gruss, Ł., Tomczyk, P. & Rosik-Dulewska, C. (2018). Analy-sis of water quality of the Stobrawa river at the location of the Walce small retention reservoir. Annual Set The Environment Protection, Vol. 20, pp. 184-202.
101. Wiatkowski, M. & Wiatkowska, B. (2019). Changes in the flow and quality of water in the dam reservoir of the Mała Panew catchment (South Poland) characterized by multidimensional data analysis. Archives of Environmental Protection, 45, 1, pp. 26–41. DOI: 10.24425/aep.2019.126339.
102. Wilk, P. & Grabarczyk, A. (2018). The effect of selected inviolable flow char-acteristics on the results of environmental analysis using the example of river absorp-tion capacity Archives of Environmental Protection, 44(2), pp. 14-25. DOI: 10.24425/119702.
103. WIOŚ (Regional Inspectorate for Environmental Protection) (2011, 2013, 2015, 2016). Report on the state of the environment in the Dolnośląskie and Wielkopolskie voivodships, Wrocław, Poznań.
104. Wu, J., Liu, Z., Yao, H., Chen, X., Chen, X., Zheng, Y., & He, Y. (2018). Impacts of reservoir operations on multi-scale correlations between hydrological drought and meteorological drought, Journal of Hydrology, 563, pp. 726–736, DOI: 10.1016/j.jhydrol.2018.06.053.
105. WZMiUW (Provincial Board of Land Reclamation and Water Facilities) Poznań (2015). Program małej retencji wodnej w województwie wielkopolskim na lata 2016–2030. Study prepared by Bureau for Land Reclamation and Environmental Engineering Biprowodmel Ltd (in Polish).
106. Żmuda R., Szewrański S., Kowalczyk T., Szarawarski Ł. & Kuriata M. (2009). Landscape alteration in view of soil protection from water erosion - an example of the Mielnica watershed, Journal of Water and Land Development, 13a, pp. 161-175.

Go to article

Authors and Affiliations

Mirosław Wiatkowski
1
Barbara Wiatkowska
2
Łukasz Gruss
1
Czesława Rosik-Dulewska
3
ORCID: ORCID
Paweł Tomczyk
1
Dawid Chłopek
1

  1. Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, Poland
  2. University of Opole, Institute of Socio-Economic Geography and Spatial Management, Poland
  3. Institute of Environmental Engineering Polish Academy of Sciences in Zabrze
Download PDF Download RIS Download Bibtex

Abstract

Many paper-related products are in daily use all over the world. Although paper is one of the most recycled materials in the European Union, no end-of-waste criteria have been defi ned. Typical paper and cardboard should be recycled, but paper materials with impurities, such as cooking oil, sand, or plastic, are much more problematic. In particular, paper contaminated with cooking oil or butter (e.g., pizza boxes) is diffi cult waste. Also baking parchment paper cannot be stored as waste paper after use. Composting could be a solution, but in many municipal solid waste collection systems, this waste types are collected with the mixed waste stream, what fi nally leads this material to landfi lling or incinerating processes. Parchment paper and pizza box cardboard contain a lot of cellulose and in landfi lls are a source of CO2 and CH4. Incineration of these materials also leads to CO2 emission. The aim of this study was to investigate the degradation of cooking-oil-contaminated paper in media with a low inorganic nitrogen content. Cardboard usually used for packaging purposes was used as pre-test material. Two types of paper usually used in the kitchen were used: pizza box cardboard and parchment paper highly contaminated with cooking oil. Two types of low inorganic nitrogen media were tested: mature municipal waste compost (MSWC) and leaf mold (LM). The decrease of mass of both paper sample types was correlated with process time. Both tested sample types: dry cellulose materials and paper with cooking oil added, were partly or completely decomposed after 6 weeks of bioprocessing in aerobic conditions without an additional dose of inorganic nitrogen. According to waste separation rules, wet paper or paper contaminated with cooking oil have to be stored with other wastes which are „not possible for further use”. This work show possibility to change these rules.
Go to article

Bibliography

  1. Agarwal, G., Liu, G. & Lattimer, G. (2014) Pyrolysis and Oxidation of Cardboard. Fire safety science-proceedings of the eleventh international symposium. pp. 124–137. DOI:10.3801/IAFSS. FSS.11-124
  2. Ahmed, S., Hall, A.M. & Ahmed, S.F. (2018) Biodegradation of Different Types of Paper in a Compost Environment. Proceedings of the 5th International Conference on Natural Sciences and Technology (ICNST’18) March 30–31, Asian University for Women, Chittagong, Bangladesh.
  3. Al-Mutairi, N. (2009) Co-composting of manure with fat, oil, and grease: Microbial fingerprinting and phytotoxicity evaluation. Can. J. Civ. Eng. 36(2) pp. 209–218. DOI:10.1139/L08-117
  4. Aluyor, E.O., Obahiagbon, K.O. & Ori-jesu, M. (2009) Biodegradation of vegetable oils: A review. Scientific Research and Essay, 4(6), pp. 543–54.
  5. Andlar, M., Rezic, T., Mardetko, M., Kracher, D., Ludwig, R. & Santek B. (2018) Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation. Engineering in Life Sciences, 18 pp. 768–778. DOI:10.1002/ elsc.201800039
  6. Balada, I., Altmann, V. & Šařec, P. (2016) Material waste paper recycling for the production of substrates and briquettes. Agronomy Research 14(3), pp. 661–671.
  7. Bekiroğlu, S., Elmas, G.M. & Yagshiyev, Y. (2017) Contribution to Sustainability and the National Economy Through Recycling Waste Paper from Istanbul’s Hotels in Turkey. BioResources, 12(4), pp. 6924–6955. DOI:10.15376/biores.12.4.6924-6955
  8. Bogaard, J. & Whitmore, P.M. (2002) Explorations of the role of humidity fluctuations in the deterioration of paper. Studies in Conservation, 47(3), pp. 11–15. DOI:10.1179/sic.2002.47.s3.003
  9. Borrego, S., Gómez de Saravia, S., Valdés, O., Vivar, I., Battistoni, P. & Guiamet, P. (2016) Biocidal activity of two essential oils on fungi that cause degradation of paper documents. International Journal of Conservation Science, 7(2), pp. 369–380.
  10. Cichosz, G. & Czeczot, H. (2011) Oxidative stability of edible fats – consequences to human health. Bromat. Chem. Toksykol. XLIV, 1, pp. 50–60
  11. Ciesielczuk, T., Poluszyńska, J., Rosik-Dulewska, Cz., Sporek, M. & Lenkiewicz, M. (2016). Uses of weeds as an economical alternative to processed wood biomass and fossil fuels. Ecological engineering, 95, pp. 485–491. DOI:10.1016/j.ecoleng.2016.06.100
  12. Cuvelier, M.E., Soto, P., Courtois, F., Broyart, B. & Bonazzi, C. (2017) Oxygen solubility measured in aqueous or oily media by a method using a non-invasive sensor. Food Control, 73, part 3, pp. 1466–1473. DOI:10.1016/j.foodcont.2016.11.008
  13. Franica, M., Grzeja, K. & Paszula, S. (2018) Evaluation of quality parameters of selected composts. Archives of Waste Management and Environmental Protection, 20(1), pp. 21–32.
  14. Ghehsareh, M.G., Khosh-Khui, M. & Nazari, F. (2011) Comparison of Municipal Solid Waste Compost, Vermicompost and Leaf Mold on Growth and Development of Cineraria (Pericallis × hybrida ‘Star Wars’). Journal of Applied Biological Sciences, 5 (3), 55–58.
  15. Gumienna, M., & Czarnecki, Z. (2010). The surface-active compounds of microbiological origin. Nauka Przyr. Technol., 4, 4, #51. (in Polish)
  16. Kaakinen, J., Vahaoja, P., Kuokkanen, T. & Roppola, K. (2007) Studies on the Effects of Certain Soil Properties on the Biodegradation of Oils Determined by the Manometric Respirometric Method. J. Automated Methods and Management in Chemistry, 034601. DOI:10.1155/2007/34601
  17. Karahan, S. (2020) Investigation of Recycling Possibilities of Stacked Waste Office Paper for at Least Five Years. GUSTIJ, 10(2) pp. 366 – 373. DOI:10.17714/gumusfenbil.606061
  18. Li, Z., Wrenn, B.A. & Venosa, A.D. (2005) Anaerobic biodegradation of vegetable oil and its metabolic intermediates in oil-enriched freshwater sediments. Biodegradation 16, pp. 341–352. DOI:10.1007/s10532-004-2057-6
  19. Micales, J.A., & Skog, K.E. (1997) The Decomposition of Forest Products in Landfills. International Biodeterioration & Biodegradation, 39, 2–3, pp. 145–158.
  20. Nowińska, A., Baranowska, J. & Malinowski, M. (2019) The analysis of biodegradation process of selected paper packaging waste. Infrastructure And Ecology Of Rural Areas 3, pp. 253–261. DOI:10.14597/INFRAECO.2019.3.1.018
  21. Osono, T. (2019) Functional diversity of ligninolytic fungi associated with leaf litter decomposition. Ecological Research, 35, pp.30–43. DOI:10.1111/1440-1703.12063
  22. Ozimek, A. & Kopeć, M. (2012). Assessment of biological activity of biomass at different stages of composting process with use of the oxitop control measurement system. Acta Agrophysica, 19(2), 379–390.
  23. Perez, J., Munoz-Dorado, J., Rubia, T. & d.l. Martınez, J. (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. International Microbiology, 5 (2), pp. 53–63. DOI:10.1007/s10123-002- 0062-3
  24. Poluszyńska, J., Ciesielczuk, T., Biernacki, M. & Paciorkowski M. (2021) The effect of temperature on the biodegradation of different types of packaging materials under test conditions. Archives of Environmental Protection, 47(4), pp. 74–83. DOI:10.24425/aep.2021.139503
  25. Rajae, A., Ghita, A.B., Souabi, S., Winterton, P., Cegarra, J. & Hafidi M. (2008) Aerobic biodegradation of sludge from the effluent of a vegetable oil processing plant mixed with household waste: Physical–chemical, microbiological, and spectroscopic analysis. Bioresource technology, 99(18), pp. 8571–8577. DOI:10.1016/j. biortech.2008.04.007
  26. Saletes, S., Siregar, F.A., Caliman, J.P. & Liwang, T. (2004) Ligno- Cellulose Composting: Case Study on Monitoring Oil Palm Residuals. Compost Science & Utilization, 12(4), pp. 372–382. DOI:10.1080/1065657X.2004.10702207
  27. Salihu, I., Mohd, Y.S., Nur, A.Y. & Siti, A.A. (2018) Microbial degradation of vegetable oils: a review, 3, pp. 45–55.
  28. Smirnova. I.E. & Saubenova, M.G. (2001) Use of Cellulose- -Degrading Nitrogen-Fixing Bacteria in the Enrichment of Roughage with Protein. Applied Biochemistry and Microbiology, 37(1), pp. 76–79.
  29. Wan Razali, W.A., Baharuddin, A.S., Talib, A.T., Sulaiman, A., Naim, M.N., Hassan, M.A. & Shirai, Y. (2012) Degradation of oil palm empty fruit bunches (OPEFB) fibre during composting process using in-vessel composter. Bioresources, 7(4), pp. 4786–4805.
  30. Wołczyński, M. & Janosz-Rajczyk, M. (2014) Influence of Initial Alkalinity of Lignocellulosic Waste on Their Enzymatic Degradation. Archives of Environmental Protection, 40(2), pp. 103–113. DOI:10.2478/aep-2014-0019
Go to article

Authors and Affiliations

Tomasz Ciesielczuk
1
ORCID: ORCID
Czesława Rosik-Dulewska
2
ORCID: ORCID

  1. Opole University, Poland
  2. Institute of Environmental Engineering, Polish Academy of Sciences, Zabrze, Poland
Download PDF Download RIS Download Bibtex

Abstract

This work presents results of the release of polycyclic aromatic hydrocarbons (PAH) from granules composed of fly ashes, which are the product of hard and coal combustion and sewage sludge. 3 types of granulates by a weight ratio of ash to sludge 3:7 and 1: 1 were used. The research of PAH leaching was conducted within a simulated period of 24 months, with the examination of PAH washing out every three months. The highest amounts of PAH (297 - 330 μg/kg dw.) were obtained_from granulates containing 7 parts by weights of sewage sludge (3 times higher in comparison with the granulate containing ash and sludge in ratio of I: 1 ). The maximum PAH release from all the examined granulates took place in the 9th month of the research. Benzo(k)fluoranthene revealed the highest fraction (67.4-76.0%) of all examined compounds.
Go to article

Authors and Affiliations

Czesława Rosik-Dulewska
ORCID: ORCID
Urszula Karwaczyńska
Tomasz Ciesielczuk
ORCID: ORCID

This page uses 'cookies'. Learn more