Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The process of carbon dioxide removal from monoethanolamine (MEA) - water solution was investigated on Poly Di Methyl Siloxane (PDMS) hydrophobic tubular membrane with a ceramic support. The effects of feed temperature, liquid flow rate and MEA concentration on CO2 mass transfer and selectivity were examined and found to be with a reasonable deviation (±25%) with predictions based on the multilayer film model. The membrane resistance was evaluated in separate experiments. The measured CO2 mass fluxes (0.17-0.45 kg/(m2h)) were found to be independent of the MEA concentration in the feed.

Go to article

Authors and Affiliations

Roman Krupiczka
Adam Rotkegel
Zenon Ziobrowski
Download PDF Download RIS Download Bibtex

Abstract

The cometabolic biodegradation of 4-Chlorophenol (4-CP) by the Stenotrophomonas maltophilia KB2 strain in the presence of phenol (P) was studied. In order to determine the kinetics of biodegradation of both substrates, present alone and in cometabolic systems, a series of tests was carried out in a batch reactor changing, in a wide range, the initial concentration of both substrates. The growth of the tested strain on phenol alone was described by Haldane kinetic model (mm = 0:9 1/h, Ksg = 48:97 gg/m3, KIg = 256:12 gg/m3, Yxg = 0:5715). The rate of 4-CP transformation by resting cells of KB2 strain was also described by Haldane equation and the estimated parameters of the model were: kc = 0:229 gc=gxh, Ksc = 0:696 gc=m3, KIc = 43:82 gc=m3. Cometabolic degradation of 4-CP in the presence of phenol was investigated for a wide range of initial 4-CP and phenol concentrations (22–66 gc/m3 and 67–280 gg/m3 respectively). The experimental database was exploited to verify the two kinetic models: CIModel taking only the competitive inhibition into consideration and a more universal CNIModel considering both competitive and non-competitive inhibition. CNIModel approximated experimental data better than CIModel.

Go to article

Authors and Affiliations

Agnieszka Gąszczak
Grażyna Bartelmus
Izabela Greń
Adam Rotkegel
Daniel Janecki
Download PDF Download RIS Download Bibtex

Abstract

The results of a study on axial dispersion in commercially available open cell metal (Nickelchromium) and ceramic (Vukopor A) foams with different pore density are presented. Residence time distributions were determined using tracer pulse experiments applying the convolution method to post process the recorded tracer concentration signals. The influence of liquid viscosity (water and 45 wt.% glycerol solution) and bed length (from 0.1 to 0.9 m) on axial dispersion was tested. It was found that fluid velocity, viscosity and foam morphology affected axial dispersion. Moreover, the axial dispersion coefficient for solid foams is lower than that of packed beds.
Go to article

Authors and Affiliations

Anna Gancarczyk
1
ORCID: ORCID
Adam Rotkegel
1
ORCID: ORCID

  1. Polish Academy of Sciences, Institute of Chemical Engineering, Bałtycka 5, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The work concerned the introduction of simplifications in a one-dimensional mathematical model of a chemical reactor. Fecralloy foam with a pore density of 16 PPC (pores per centimetre) was used as catalyst support. The analysed process was the combustion of methane with a typical concentration found in the ventilation air of hard coal mines. The process was carried out using a palladium catalyst.
Go to article

Authors and Affiliations

Mateusz Korpyś
1
ORCID: ORCID
Marzena Iwaniszyn
1
ORCID: ORCID
Katarzyna Sindera
1
ORCID: ORCID
Andrzej Kołodziej
1
ORCID: ORCID
Adam Rotkegel
1
ORCID: ORCID
Joanna Profic-Paczkowska
2
ORCID: ORCID
Maciej Sitarz
3
ORCID: ORCID
Anna Gancarczyk
1
ORCID: ORCID

  1. Polish Academy of Sciences, Institute of Chemical Engineering, Bałtycka 5, 44-100 Gliwice, Poland
  2. Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland
  3. AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Mickiewicza 30, 30-059 Kraków, Poland

This page uses 'cookies'. Learn more