Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

At thermal junctions of aluminium alloy castings and at points where risering proves to be difficult there appear internal or external

shrinkages, which are both functionally and aesthetically inadmissible. Applying the Probat Fluss Mikro 100 agent, which is based on

nano-oxides of aluminium, results in the appearance of a large amount of fine microscopic pores, which compensate for the shrinking of

metal. Experimental tests with gravity die casting of AlSi8Cu3 and AlSi10Mg alloys have confirmed that the effect of the agent can be of

advantage in foundry practice, leading to the production of castings without local concentrations of defects and without the appearance of

shrinkages and macroscopic gas pores. Also, beneficial effect on the mechanical properties of the metal has been observed.

Go to article

Authors and Affiliations

J. Roučka
J. Hotař
Download PDF Download RIS Download Bibtex

Abstract

Ductile irons of the type of Si-Mo are characterized by increased resistance to long-term influence of high temperatures and cyclic temperature changes. They are mainly used in castings of combustion engine exhaust piping and other castings utilized at temperatures of up to 850°C. The aim of the study is to verify the mechanical properties of non-alloyed cast iron EN CSN GJS 450, SiMo4-0.5 and SiMo5-1 ductile irons at temperatures of 700 to 800°C, and the extent of their superficial oxidation after longterm annealing at a temperature of 900°C. Via chemical microanalysis the composition of oxidation products in the surface layer was evaluated.
Go to article

Authors and Affiliations

J. Roučka
E. Abramová
V. Kaňa
Download PDF Download RIS Download Bibtex

Abstract

An analysis has been carried out of the influence of annealing time at the preheating temperature of 650 °C on the change in hardness and alloy structure of lamellar graphite cast iron in the working as well as in the laboratory conditions. This preheat temperature is common during reclaiming welding of castings with complex shapes. The changes in unalloyed cast iron EN-GJL 200 to EN-GJL 300 according to ISO 1690 standard and cast iron with low amount of elements such as Sn, Cu, Cr, and Mo and their combinations were assessed. It was found that the cast iron of higher strength grades has better hardness and structural stability. Cast iron alloyed with chromium or its combinations has the highest stability. In unalloyed cast iron, a partial degradation of pearlite occurs; in alloyed cast iron the structural changes are not conclusive.

Go to article

Authors and Affiliations

J. Roučka
ORCID: ORCID
J. Prochazka
V. Kana
V. Krutis
K. Nedelova
Download PDF Download RIS Download Bibtex

Abstract

In many application fields, thin-walled ductile iron castings can compete with castings made from aluminium alloys thanks as their show superior mechanical properties higher stiffness, vibrations damping as well as properties at higher temperatures. As problematic criterion in thin-walled cast-iron castings can be seen the graphitization ability and high sensitivity of the structure and the mechanical properties to the solidification rate.
The tests were curried on plate castings with wall thicknesses of 3, 5, and 8 mm, using inoculants based on FeSi70 with different contents of nucleation-active elements as aluminium, calcium, zirconium and magnesium. The inoculation was made by the in-mould method. In the experiments structures were achieved, differing by the graphite dispersity, structure and mechanical properties. The experiments have proved particularly a high sensitivity of the structure and the mechanical properties to the cooling rate of the sample castings. The influence of the inoculant type is less important than the influence of solidification rate.
Go to article

Bibliography

[1] Caldera, M., Chapetti, M., Massone, J.M. & Sikora J.A. (2007). Influence of nodule count on fatique properties of ferritic thin wall ductile iron. Materials Science and Engineering. 23(8), 1000-1004. DOI: 10.1179/174328407X185910
[2] Stefanescu, D.M., Dix, :.P., Ruxanda, R.E., Corbitt-Coburn, C. & Piwonka, T.S. (2002). Tensile properties of thin wall ductile iron. AFS Transactions. 02-178, 1149-1162 Schaumburg USA: AFS Society.
[3] Soedarsono, J.W., Suharno, B. & Sulamet-Ariobimo, R.D. (2011). Effect of casting design to microstructure and mechanical properties of 3 mm TWDI plate. Advance Material Researchs. 415-417, 831-837. https://doi.org/10.4028/www.scientific.net/AMR.415-417.831
[4] Labresque, C. (2003). Production and properties of thin-wall ductile iron castings. International Journal of Cast Metals Research. 16(1-3), 313- 317. https://doi.org/10.1080/13640461.2003.11819601
[5] Sulamet-Ariobimo, R.D., Soedersono, J.W. & Soemardi,T.P. (2017). Thin wall ductile iro and n castings. IntechOpen 72117. Advanced Casting Technologies. DOI: 10.5772/intechopen.72117
[6] Vijayan, S., Wilson, P. & Prabhakaran, K. (2017). Ultra low-density mullite foams by reaction sintering of thermo-foamed alumina-silica powder dispersion in molten sucrose. Journal of the European Ceramic Society. 37(4), 1657-1664. https://doi.org/10.1016/j.jeurceramsoc.2016.11.025
[7] Stefanescu, D.M., Alonso, G. & Suarez, R. (2020). Recent devepments in understanding nucleation and crystallization of spheroidal grapfite in iron- carbon-silicon alloys. Metals. 1092), 221, 1-39. DOI: 10.3390/met10020221.
[8] Alonso, G., Larrañaga, P., Stefanescu, D.M., De la Fuente, E., Natxiondo, A. & Suarez, R. (2017). Kinetics of nucleation and growth of graphite at different stages of solidification for spheroidal graphite iron. International Journal of Metalcasting. 11(1), 14- 26. DOI: 10.1007/s40962-016-0094-7
[9] Alonso, G., Stefanescu, D.M., Fuente, E., Larrana, P. & Suarez, R. (2018). The influence of trace elements on the nature of the nuclei of graphite ductile iron. Materials Science Forum. 925,78-85. ISSN 1662-9752
[10] Skaland, T. (2005). Nucleation mechanisms in ductile iron. Proceedings of AFS Cast Iron Inoculation Conference. 29-30 September 2005. Schaumburg. USA (pp. 13-30).
[11] Skaland, T., Grong, O. & Grong, T. (1993). A model for the graphite formation in ductile cast iron. Metal Transaction. 24A, 2321-2345.
[12] Lekakh, S. (2014). Analysis of heterogeneous nucleation in ductile iron. Shape casting. 5th International Symposium. Materials Science, January. 121-128. DOI: 10.1007/978-3-319-48130-2_15
[13] Alonso, G., Stefanescu, D.M., Suarez. R. (2020). Effect of antimony on nucleation process of spheroidal graphite iron. AFS Proceedings of the 124th Metalcasting congress. Paper 2020-04.
[14] Stefanescu, D.M. (2016). On the crystalization of graphite from liquid iron-carbon-silicon melts. Acta Materialia. 107, 102-126. https://doi.org/10.1016/j.actamat.2016.01.047
[15] Stefanescu, D.M. Ruxanda, R. & Dix, L.P. (2003). The metallurgy and tensile mechanical properties of thin wall spheroidal graphite irons. Int. Journal of Cast Metals Research. 16(1-3), 319-324. https://doi.org/10.1080/13640461.2003.11819602
[16] Javaid, A. (2001). In Proceedings of Cast Iron Division, AFS 105th Casting Congress, Dallas, USA.
Go to article

Authors and Affiliations

J. Roučka
1
ORCID: ORCID
V. Kaňa
1
ORCID: ORCID
T. Kryštůfek
1
A. Chýlková
1

  1. Brno University of Technology, Faculty of Mechanical Engineering, Czech Republic

This page uses 'cookies'. Learn more