Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of the article is indicating the advantages of utilizing the synergy obtained by introducing two management methods: Lean Construction and Agile Management using the example of the process of deliveries of concrete mix in road construction. Despite the seemingly contradictory assumptions (Lean Management aims at limiting wastefulness and maximizing the value for the customer and agile management serves for creating the possibility for fast, effective response to non-expected changes thanks to the adopted strategy of flexibility, which usually requires engaging additional resources), both management methods deliver the effect of increasing the effectiveness of the machine laying the pavement. Using a “spaghetti diagram” (one of the tools of Lean Management) led to limiting the time losses during loading and unloading the concrete mix destined for constructing highway pavement. On the other hand, the tactic of technological flexibility in the form of a modification of the concrete mix allowed for broadening the time frame for the delivery of concrete to the construction site to as much as two hours. Moreover, applying the real time delivery management system (in accordance with the assumptions of Construction 4.0) created the possibilities for ensuring quick reacting to the changing conditions of delivery and laying the concrete mix in the pavement and ensuring the appropriate functioning of the machine laying the pavement. The presented examples indicated the advantages of the suggested concept in reference to the traditional solution.
Go to article

Authors and Affiliations

Jerzy Pasławski
1
Tomasz Rudnicki
2
ORCID: ORCID

  1. Poznan University of Technology, Faculty of Civil and Transport Engineering, ul.Piotrowo 5, 60-965 Poznan, Poland
  2. Faculty of Civil Engineering and Geodesy, Military University of Technology in Warsaw, 2 Gen. S.Kaliskiego St., 01-476 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The problem of the proper functioning of Park-and-Ride facilities seems to be of key importance for ensuring appropriate transport in cities in which the intensity of road traffic is systematically increasing, together with the increase of environmental pollution (air pollution, noise etc.). The attractiveness of a car park of this kind seems obvious – instead of a burdensome journey in one’s own car, one changes the vehicle to fast municipal public transport or another means of transport (a bike, a scooter), or reaches the destination on foot. This results in benefits – above all in terms of comfort (shortening the time of the journey), health advantages etc. As has been proven by experiments, facilities of this kind are an expensive investment, the location of which (e.g. stand-alone) does not always ensure full utilization. The concept presented in the article assumes the possibility of a gradual extension of the multistorey car park following the increase of the demand. The article attempted to demonstrate that one of the sources of increasing attractiveness is the appropriate location (guaranteeing easy commute to the car park), the possibilities to continue the journey in an attractive way, then increasing the attractiveness through the possibility to use various services (shopping, the gym, the swimming pool, cinema, restaurants) and thirdly: the plan of launching the car park and its utilization in the life cycle should ensure the possibility of flexible reacting to changes of the demand (the experiences of the ongoing pandemic indicate that there is no guarantee of ensuring systematic demand increase). An element which also seems significant is the limitation of costs in the initial stage of investments of this kind with the possibility of gradual extension following the change of user habits.
Go to article

Authors and Affiliations

Jerzy Paslawski
1
ORCID: ORCID
Tomasz Rudnicki
2
ORCID: ORCID

  1. Poznan University of Technology, Faculty of Civil and Transport Engineering, 5 Piotrowo St., 60-965 Poznan, Poland
  2. Faculty of Civil Engineering and Geodesy, Military University of Technology in Warsaw,2 Gen. S. Kaliskiego St., 01-476 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of the paper was to analyse the possibility to use waste material which is created during the production of mineral-asphalt mixes as a side effect of the process of drying and dedusting diabase aggregate in high temperature. Experimental studies included the analysis of the influence of the addition of diabase dust on the improvement of the properties of cement concrete destined for the construction of local roads. The mineral additive in the form of diabase dust, which constitutes natural waste, was inserted into the concrete mix as a mineral additive substituting a part of the aggregate with the constant amount of cement and water, and additionally as the substitute for cement. The performed studies resulted in the conclusion that adding diabase dust significantly increased the tightness and density of concrete, which impacts the increase of compressive strength by 7, 21 and 28% in reference to model concrete. The insertion of the waste diabase dust into the concrete mix significantly improved the freeze-thaw resistance of concrete after 150 cycles of testing and reduced the water absorption by 6, 15 and 21%. Using diabase dust as a substitute in the following amount: 50, 100 and 150 kg/m3 did not cause significant changes in the scope of density and water absorption, whereas the reduction of the compressive strength was from 8, 23 and 33% in reference to the model concrete. The application of dust as the substitute for cement resulted in the reduction of the costs of concrete by 6, 12 and 18% and resulted in the possibility to fully apply waste material, which confirms the justness of undertaking implementation research. Concrete with the use of waste rock dusts may be qualified as concrete that is environmentally friendly and compliant with the sustainable development of modern construction materials.
Go to article

Authors and Affiliations

Tomasz Rudnicki
1
ORCID: ORCID
Robert Jurczak
2
ORCID: ORCID

  1. Faculty of Civil Engineering and Geodesy, Military University of Technology in Warsaw, ul. Gen. S. Kaliskiego 2, 01-476 Warsaw, Poland
  2. Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology in Szczecin, al. Piastów 50a, 70-311 Szczecin, Poland

This page uses 'cookies'. Learn more