Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the logarithmic mean temperature difference method is used to determine the heat power of a tube-in-tube exchanger. Analytical solutions of the heat balance equations for the exchanger are presented. The considerations are illustrated by an example solution of the problem. In particular, the heat power of the tube-in-tube heat exchanger is determined taking into account the variants of work in the co-current and counter-current mode. Apart from the analytical solutions, appropriate numerical calculations in Matlab environment have been carried out.
Go to article

Bibliography

[1] Andrzejczyk R., Muszynski T.: Thermal and economic investigation of straight and U-bend double tube heat exchanger with coiled wire turbulator. Arch. Thermodyn. 40(2019), 2, 17–33.
[2] Bury T., Składzien J., Widziewicz K.: Experimental and numerical analyses of finned cross flow heat exchangers efficiency under non-uniform gas inlet flow conditions. Arch. Thermodyn. 31(2010), 4, 133–144.
[3] Hobler T.: Heat Transfer and Exchangers. Warszawa 1971 (in Polish).
[4] Kuppan T.: Heat Exchanger Design Handbook (2nd Edn.). CRC Press Taylor & Francis Group, Boca Raton 2013.
[5] Nitsche M., Gbadamosi R.O.: Heat Exchanger Design Guide. Elsevier, New York 2016.
[6] Pakowski Z., Adamski R.: Fundamentals of MATLAB in Process Engineering. Lodz Univ. Technol. Press, Łódz 2014 (in Polish).
[7] Roetzel W., Luo X.: Thermal analysis of heat exchanger networks. Arch. Thermodyn. 26(2005), 1, 5–16.
[8] Shah R.K., Sekulic D.P.: Fundamentals of Heat Exchanger Ddesign. Wiley, Hoboken 2003.
[9] Smith E.M.: Thermal Design of Heat Exchangers. A Numerical Approach: Direct- Sizing and Step-Wise Rating. Wiley, Chichester 1997.
[10] Taler D.: Numerical Modeling and Experimental Testing of Heat Exchangers. Springer, Berlin 2018.
Go to article

Authors and Affiliations

Kazimierz Rup
1

  1. Cracow University of Technology, al. Jana Pawła II 37, Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the analysis of momentum, angular momentum and heat transfer during unsteady natural convection in micropolar nanofluids. Selected nanofluids treated as single phase fluids contain small particles with diameter size 10-38.4 nm. In particular three water-based nanofluids were analyzed. Volume fraction of these solutions was 6%. The first of the analyzed nanofluids contained TiO2nanoparticles, the second one contained Al2O3nanoparticles, and the third one the Cu nanoparticles.
Go to article

Authors and Affiliations

Kazimierz Rup
Konrad Nering
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the numerical solution to the unsteady natural convection problem in micropolar fluid in the vicinity of a vertical plate, heat flux of which rises suddenly at a given moment. In order to solve this problem the method of finite differences was applied. The numerical results have been presented for a range of values of the dimensionless material properties and fluid Prandtl number. The analysis of the results shows that the intensity of the heat transfer in micropolar fluid is lower compared to the Newtonian fluid.

Go to article

Authors and Affiliations

Kazimierz Rup
Agata Dróżdż

This page uses 'cookies'. Learn more