Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

“Polyurea coatings as a possible structural reinforcement system” is a research project aimed at exploring possible applications of polyurea coatings for improving structural performance (including steel, concrete, wooden and other structures used in the construction industry). As part of the project, this paper focuses on evaluating the performance of bent reinforced concrete (RC) beams covered with a polyurea coating system. Easy polyurea application and its numerous advantages can prove very useful when existing RC structural elements are repaired or retrofitted. Laboratory tests of three types of RC beams with three different longitudinal reinforcement ratios were performed for the purposes of this paper. The tests were designed to determine the bending strength, performance and cracking patterns of the coated RC beams. In addition, a theoretical model was developed to predict the impact of the polyurea coating on the bending strength of the RC beams. On this basis, the effect of the coating on the bending strength and the performance of the coated beams at the ultimate limit state (ULS) was examined and analyzed. The results showed that the use of the polyurea coating has a positive impact on the cracking state of the RC beams subject to bending and little effect on their bending strength.
Go to article

Authors and Affiliations

Jacek Szafran
1
ORCID: ORCID
Artur Matusiak
1
Katarzyna Rzeszut
2
ORCID: ORCID
Iwona Jankowiak
3

  1. Department of Structural Mechanics, Faculty of Civil Engineering, Architecture and Environmental Engineering, Lodz University of Technology, Aleja Politechniki 6, 90-924 Łódź, Poland
  2. Institute of Building Engineering, Faculty of Civil and Transport Engineering, Poznan University of Technology, Piotrowo 5, 60-965 Poznan, Poland
  3. Institute of Civil Engineering, Faculty of Civil and Transport Engineering, Poznan University of Technology, Piotrowo 5, 60-965 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

The main aim of the study is an assessment of models suitability for steel beams made of thin-walled cold-formed sigma profiles with respect to different numerical descriptions used in buckling analysis. The analyses are carried out for the sigma profile beam with the height of 140 mm and the span of 2.20 m. The Finite Element (FE) numerical models are developed in the Abaqus program. The boundary conditions are introduced in the formof the so-called fork support with the use of displacement limitations. The beams are discretized using S4R shell finite elements with S4R linear and S8R quadratic shape functions. Local and global instability behaviour is investigated using linear buckling analysis and the models are verified by the comparison with theoretical critical bending moment obtained from the analytical formulae based on the Vlasow beam theory of the thin-walled elements. In addition, the engineering analysis of buckling is carried out for a simple shell (plate) model of the separated cross-section flange wall using the Boundary Element Method (BEM). Special attention was paid to critical bending moment calculated on the basis of the Vlasov beam theory, which does not take into account the loss of local stability or contour deformation. Numerical shell FE models are investigated, which enable a multimodal buckling analysis taking into account interactive buckling. The eigenvalues and shape of first three buckling modes for selected numerical models are calculated but the values of critical bending moments are identified basing on the eigenvalue obtained for the first buckling mode.
Go to article

Authors and Affiliations

Katarzyna Rzeszut
1
ORCID: ORCID
Ilona Szewczak
2
ORCID: ORCID
Patryk Różyło
3
ORCID: ORCID
Michał Guminiak
4
ORCID: ORCID

  1. Poznan University of Technology, Institute of Building Engineering, Marii Skłodowskiej-Curie 5, 60-965 Poznan
  2. Lublin University of Technology, Faculty of Civil Engineering and Architecture, ul. Nadbystrzycka 38D,20–618 Lublin, Poland
  3. Lublin University of Technology, Faculty of Mechanical Engineering, ul. Nadbystrzycka 38 D, 20–618 Lublin, Poland
  4. Poznan University of Technology, Institute of Structural Analysis, Marii Skłodowskiej-Curie 5, 60-965 Poznan, Poland

This page uses 'cookies'. Learn more