Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with the issue of production scheduling for various types of employees in a large manufacturing company where the decision-making process was based on a human factor and the foreman’s know-how, which was error-prone. Modern production processes are getting more and more complex. A company that wants to be competitive on the market must consider many factors. Relying only on human factors is not efficient at all. The presented work has the objective of developing a new employee scheduling system that might be considered a particular case of the job shop problem from the set of the employee scheduling problems. The Neuro-Tabu Search algorithm and the data gathered by manufacturing sensors and process controls are used to remotely inspect machine condition and sustainability as well as for preventive maintenance. They were used to build production schedules. The construction of the Neuro-Tabu Search algorithm combines the Tabu Search algorithm, one of the most effective methods of constructing heuristic algorithms for scheduling problems, and a self-organizing neural network that further improves the prohibition mechanism of the Tabu Search algorithm. Additionally, in the paper, sustainability with the use of Industry 4.0 is considered. That would make it possible to minimize the costs of employees’ work and the cost of the overall production process. Solving the optimization problem offered by Neuro-Tabu Search algorithm and real-time data shows a new way of production management.
Go to article

Authors and Affiliations

Anna Burduk
1
ORCID: ORCID
Kamil Musiał
1
Artem Balashov
1
Andre Batako
2
Andrii Safonyk
3
ORCID: ORCID

  1. Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  2. Liverpool John Moores University, Faculty of Engineering and Technology,70 Mount Pleasant Liverpool L3 3AF, UK
  3. National University of Water and Environmental Engineering, Department of Automation, Electrical Engineering and Computer-Integrated Technologies, Rivne 33000, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The article describes the development of a model problem for electrocoagulation treatment of industrial wastewater taking into account changes in voltage and current. The study included computer simulation of the change in the concentration of iron at the output of the electrocoagulator at variable current levels. The laboratory-scale plant was developed for the photocolorimetric analysis of the iron-containing coagulant. It consisted of a flowing opaque cell through which water is pumped with a constant flow and also the block for processing and storage of information. Such structure allows to reduce human participation in the measurement process and to ensure the continuity of measurement without any need for sampling of the tested material, as well as to reduce the measurement cost. During the processing of results, graphical dependences were determined between RGB-components of water colour and the corresponding concentration of total iron and Fe3+ in water.
Go to article

Bibliography

AL-BARAKAT H.S., MATLOUB F.K., AJJAM S.K., AL-HATTAB T.A. 2020. Modeling and simulation of wastewater electrocoagulation reactor. The First International Conference of Pure and Engineering Sciences (ICPES2020). Karbala, Iraq, 26– 27.02.2020. IOP Conference. Ser. Materials Science and Engineering. Vol. 871, 012002 p. 1–16. DOI 10.1088/1757-899X/ 871/1/012002.
ANNEM S. 2017. Determination of iron content in water. Capstone Project. MSc Thesis. Governors State University OPUS Open Portal to University Scholarship pp. 18.
ASSÉMIAN A.S., KOUASSI E.K. 2018. Removal of a persistent dye in aqueous solutions by electrocoagulation process: Modeling and optimization through response surface methodology. Water Air and Soil Pollution. Vol. 229(6), 184. DOI 10.1007/s11270-018-3813-2.
BARROS J.A.V.A., MOREIRA F., SANTOS G., WISNIEWSKI C., LUCCAS P.O. 2016. Digital image analysis for the colorimetric determination of aluminum, total iron, nitrite and soluble phosphorus in waters. Analytical Letters. Vol. 50(2) p. 414–430. DOI 10.1080/00032719.2016.1182542.
BOMBA A., KLYMIUK YU., PRYSIAZHNIUK I., PRYSIAZHNIUK O., SAFONYK A. 2016. Mathematical modeling of wastewater treatment from multicomponent pollution by using microporous particles. AIP Conference Proceedings. Vol. 1773, 040003 p. 1–11. DOI 10.1063/1.4964966.
BOMBA A., SAFONYK A. 2013. Mathematical modeling of aerobic wastewater treatment in porous medium. Zeszyty Naukowe WSInf. Vol. 12. Nr 1 p. 21–29.
FIRDAUSA M., ALWIB W., TRINOVELDIB F., RAHAYUC I., RAHMIDARD L., WARSITOA K. 2014. Determination of chromium and iron using digital image-based colorimetry. Procedia Environmental Sciences. Vol. 20 p. 298–304. DOI 10.1016/j.proenv.2014.03.037.
FORERO G., HERNÁNDEZ-LARA R., ROJAS O. 2020. Development of an electrocoagulation equipment for wall paint wastewater treat-ment. Ingeniería y Competitividad. Vol. 22(2) p. 1–10. DOI 10.25100/iyc.v22i2.9474.
GOVINDAN K., ARUMUGAM A., KALPANA M., RANGARAJANB М., SHANKARE P., JANG A. 2019. Electrocoagulants characteristics and applica-tion of electrocoagulation for micropollutant removal and transformation mechanism. ACS Applied Materials & Interfaces. Vol. 12(1) p. 1775–1788. DOI 10.1021/acsami.9b16559.
KAUR R., AMIT A. 2018. Treatment of waste water through electrocoagulation. Pollution Research. Vol. 37(2) p. 394–403. KHANDEGAR V., ACHARYA S., JAIN A.K. 2018. Data on treatment of sewage wastewater by electrocoagulation using punched aluminum electrode and characterization of generated sludge. Data in Brief. Vol. 18 p. 1229–1238. DOI 10.1016/j.dib.2018.04.020.
KOYUNCU S., ARIMAN S. 2020. Domestic wastewater treatment by real- scale electrocoagulation process. Water Science and Technology. Vol. 81(4) p. 656–667. DOI 10.2166/wst.2020.128.
LUKA G. S., NOWAK E., KAWCHUK J., HOORFAR M., NAJJARAN H. 2017. Portable device for the detection of colorimetric assays. Royal Society Open Science. Vol. 4(11), 171025 p. 1–13. DOI 10.1098/rsos.171025.
MASAWAT P., HARFIELD A., SRIHIRUN N., NAMWONG A. 2016. Green determination of total iron in water by digital image colorimetry. Analytical Letters. Vol. 50(1) p. 173–185. DOI 10.1080/00032719.2016.1174869.
PAVÓN T., MUNGUIA G., MOKHTAR A., ROMERO H., HUACUZ J. 2018. Photovoltaic energy-assisted electrocoagulation of a synthetic textile effluent. International Journal of Photoenergy. Vol. 3 p. 1–9. DOI 10.1155/2018/7978901.
PERREN W., WOJTASIK A., CAI Q. 2018. Removal of microbeads from wastewater using electrocoagulation. American Chemical Society Omega. Vol. 3 p. 3357–3364. DOI 10.1021/acsomega.7b02037.
POSAVČIĆ H., HALKIJEVIĆ I., VUKOVIĆ Ž. 2019. Application of electro-coagulation for water conditioning. Environmental Engineering – Inženjerstvo Okoliša. Vol. 6. No. 2 р. 59–70. DOI 10.37023/ee.6.2.3.
RAHMAN A.N., KUMAR N.K.M.F., GILAN U.J., JIHED E.E., PHILIP A., LINUS A.A., SHAHINAN NEN D., ISMAIL V. 2020. Kinetic study & statistical modelling of Sarawak Peat Water Electrocoagulation System using copper and aluminium electrodes. Journal of Applied Science & Process Engineering. Vol. 7(1) p. 439–456. DOI 10.33736/jaspe.2195.2020.
SAMIR A., CHELLIAPAN S., ZURIATI Z., AJEEL M., ALABA P. 2016. A review of electrocoagulation technology for the treatment of textile wastewater. Reviews in Chemical Engineering. Vol. 33 p. 263– 292.
SHANTARIN V.D., ZAVYALOV V.V. 2003. Optimization of processes of electrocoagulation treatment of drinking water. Nauchnye i Tekhnicheskiye Aspekty Okhrany Okruzhayushchey Sredy. No. 5 p. 62–85.
YASRI N., ARUMUGAM A., KALPANA M., SHU T., FULADPANJEH B., OLDENBURG T., TRIFKOVIC M., MAYER B., ROBERTS P.L.E. 2017. Electrocoagulation for the treatment of produced water [online]. University of Calgary. [Access 10.01.2021]. Available at: https://albertainnovates.ca/wp-content/uploads/2019/07/145-Nael-Yasri. pdf
YASRI N., HU J., KIBRIA MD. G., ROBERTS P. L. E. 2020. Electrocoagulation separation processes. Multidisciplinary advances in efficient separation processes. Chapter 6. ACS Symposium Series. Vol. 1348 р. 167–203. DOI 10.1021/bk-2020-1348.ch006.
YAVUZ Y., ÖGÜTVEREN Ü. B. 2018. Treatment of industrial estate wastewater by the application of electrocoagulation process using iron electrodes. Journal of Environmental Management. Vol. 207 p. 151–158. DOI 10.1016/j.jenvman.2017.11.034.
Go to article

Authors and Affiliations

Andrii Safonyk
1
ORCID: ORCID
Ivanna Hrytsiuk
1
ORCID: ORCID
Marko Klepach
1
ORCID: ORCID
Maksym Mishchanchuk
1
ORCID: ORCID
Andriy Khrystyuk
1
ORCID: ORCID

  1. National University of Water and Environmental Engineering, Institute of Automatics, Cybernetics and Computer Engineering, Soborna St, 11, Rivne, Rivnens’ka oblast, 33028, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The main purpose of the article is to develop a multifactorial model for rapid assessment of the efficiency of biological wastewater treatment reactors. A mathematical model of the process of biological wastewater treatment has been developed based on: changes in the concentration of organic contaminants in the bioreactor over time, taking into account the uneven flow of wastewater to the treatment plant, the process of substrate entering the bioreactor (different amounts may enter at different times). The software implementation of the proposed algorithm for solving the corresponding model problem in Python is carried out. The results of computer experiments on the study of the efficiency of wastewater treatment in biological treatment reactors for different operating conditions of facilities are presented. In particular, such processes were considered with taking into account the unevenness of the load, because the maximum cleaning loads are in the morning and in the evening. The task was solved to simulate a real situation and show how cleaning takes place at the maximum load at a certain time of the day. The results obtained will be useful for calculations in the design of biological treatment facilities or in the reconstruction of existing bioreactors for their prospective operation under new operating conditions.
Go to article

Authors and Affiliations

Andrii Safonyk
1
ORCID: ORCID
Oleg Rogov
1
ORCID: ORCID
Maksym Trokhymchuk
1
ORCID: ORCID
Olena Prysiazhniuk
1
ORCID: ORCID
Ihor Prysiazhniuk
2
ORCID: ORCID

  1. National University of Water and Environmental Engineering, Institute of Energy, Automatics and Water Management, Department of Automation, Electrical Engineering and Computer-integrated Technologies, 11 Soborna St, 33028, Rivne, Ukraine
  2. Rivne State University of Humanities, Faculty of Mathematics and Informatics, 31 Plastova St, 33000, Rivne, Ukraine

This page uses 'cookies'. Learn more