Search results

Filters

  • Journals
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This work summarises investigations focused on the photoanode impact on the photovoltaic response of dye-sensitized solar cells. This is a comparison of the results obtained by the authors’ research team with literature data. The studies concern the effect of the chemical structure of the applied dye, TiO2 nanostructure, co-adsorbents addition, and experimental conditions of the anode preparation. The oxide substrates were examined using a scanning electron microscope to determine the thickness and structure of the material. The TiO2 substrates with anchored dye molecules were also tested for absorption properties in the UV-Vis light range, largely translating into current density values. Photovoltaic parameters of the fabricated devices with sandwich structure were obtained from current-voltage measurements. During tests conducted with the N719 dye, it was found that devices containing an 8.4 µm thick oxide semiconductor layer had the highest efficiency (5.99%). At the same time, studies were carried out to determine the effect of the solvent and it was found that the best results were obtained using an ACN : tert-butanol mixture (5.46%). Next, phenothiazine derivatives (PTZ-1–PTZ-6) were used to prepare the devices; among the prepared solar cells, the devices containing PTZ-2 and PTZ-3 had the highest performance (6.21 and 6.22%, respectively). Two compounds designated as Th-1 and M-1 were used to prepare devices containing a dye mixture with N719.
Go to article

Bibliography

  1. Kishore Kumar, D. et al. Functionalized metal oxide nanoparticles for efficient dye-sensitized solar cells (DSSCs): A review. Sci. Energy Technol. 3, 472–481 (2020). https://doi.org/10.1016/j.mset.2020.03.003
  2. Gerischer, H., Michel-Beyerle, M. E., Rebentrost, F. & Tributsch, H. Sensitization of charge injection into semiconductors with large band gap. Acta 13, 1509–1515 (1968). https://doi.org/10.1016/0013-4686(68)80076-3
  3. Tsubomura, H., Matsumura M., Nomura, Y. & Amamiya, T. Dye senstized Zinc oxide: aqueous electrolyte: platinumphotocell. Nature 261, 402–403 (1976). https://doi.org/10.1038/261402a0
  4. O’Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 Nature 353, 737–740 (1991). https://doi.org/10.1038/353737a0
  5. Ji, J.-M., Zhou, H., Eom, Y. K., Kim, C. H. & Kim, H. K. 14.2% efficiency dye-sensitized solar cells by co-sensitizing novel thieno[3,2-b]indole-based organic dyes with a promising porphyrin sensitizer. Energy Mater. 10, 1–12 (2020). https://doi.org/10.1002/aenm.202000124
  6. Gnida, P., Libera, M., Pająk, A. & Schab-Balcerzak, E. Examination of the effect of selected factors on the photovoltaic response of dye-sensitized solar cells. Energy Fuels 34, 14344–14355 (2020). https://doi.org/10.1021/acs.energyfuels.0c02188
  7. Selvaraj, P. et al. Enhancing the efficiency of transparent dye-sensitized solar cells using concentrated light. Energy Mater. Sol. Cells 175, 29–34 (2018). https://doi.org/10.1016/j.solmat.2017.10.006
  8. Baglio, V., Girolamo, M., Antonucci, V. & Aricò, A. S. Influence of TiO2 film thickness on the electrochemical behaviour of dye-sensitized solar cells. Int. J. Sci. 6, 3375–3384 (2011).
  9. Zhang, H. et al. Effects of TiO2 film thickness on photovoltaic properties of dye-sensitized solar cell and its enhanced performance by graphene combination. Mater. Res. Bull. 49, 126–131 (2014). https://doi.org/10.1016/j.materresbull.2013.08.058
  10. Madurai Ramakrishnan, V. et al. Transformation of TiO2 nanoparticles to nanotubes by simple solvothermal route and its performance as dye-sensitized solar cell (DSSC) photoanode. J. Hydrog. 45, 15441–15452 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.021
  11. Lee, S. et al. Two-step sol-gel method-based TiO2 nanoparticles with uniform morphology and size for efficient photo-energy conversion devices. Chem. Mater. 22, 1958–1965 (2010). https://doi.org/10.1021/cm902842k
  12. Gnida, P. et al. Impact of TiO2 nanostructures on dye-sensitized solar cells performance. Materials 14, 13–15 (2021). https://doi.org/10.3390/ma14071633
  13. Slodek, A. et al. New benzo [ h ] quinolin-10-ol derivatives as co-sensitizers for DSSCs. Materials 14, 1–19 (2021) https://doi.org/10.3390/ma14123386
  14. Lee, K. M. et al. Efficient and stable plastic dye-sensitized solar cells based on a high light-harvesting ruthenium sensitizer. J. Mater. Chem. 19, 5009–5015 (2009). https://doi.org/10.1039/b903852c
  15. Kumar, V., Gupta, R. & Bansal, A. Role of chenodeoxycholic acid as co-additive in improving the efficiency of DSSCs. Sol. Energy 196, 589–596 (2020) https://doi.org/10.1016/j.solener.2019.12.034
  16. Ko, S. H. et al. Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Lett. 11, 666–671 (2011). https://doi.org/10.1021/nl1037962
  17. Lee, K.-M. Effects of co-adsorbate and additive on the performance of dye-sensitized solar cells: A photophysical study. Sol. Energy Mater. Sol. Cells 91, 1426–1431 (2007). https://doi.org/10.1016/j.solmat.2007.03.009
  18. Wang, X. et al. Enhanced performance of dye-sensitized solar cells based on a dual anchored diphenylpyranylidene dye and N719 co-sensitization. J. Mol. Struct. 1206, 127694 (2020). https://doi.org/10.1016/j.molstruc.2020.127694
  19. Kula, S. et al. Effect of thienyl units in cyanoacrylic acid derivatives toward dye-sensitized solar cells. Photochem. Photobiol. B, Biol. 197, 111555 (2019). https://doi.org/10.1016/j.jphotobiol.2019.111555
  20. Kotowicz, S. et al. Photoelectrochemical and thermal characteri-zation of aromatic hydrocarbons substituted with a dicyanovinyl unit. Pigm. 180, 108432 (2020). https://doi.org/10.1016/j.dyepig.2020.108432
  21. Fabiańczyk, A. et al. Effect of heterocycle donor in 2-cyanoacrylic acid conjugated derivatives for DSSC applications. Energy 220, 1109–1119 (2021). https://doi.org/10.1016/j.solener.2020.08.069
  22. Luo, J. et al. Co-sensitization of dithiafulvenyl-phenothiazine based organic dyes with N719 for efficient dye-sensitized solar cells. Acta 211, 364–374 (2016). https://doi.org/10.1016/j.electacta.2016.05.175
  23. Wu, Z. S. et al. New organic dyes with varied arylamine donors as effective co-sensitizers for ruthenium complex N719 in dye sensitized solar cells. Power Sources 451, 227776 (2020). https://doi.org/10.1016/j.jpowsour.2020.227776
  24. Dang Quang, L. N., Kaliamurthy, A. K. & Hao, N. H. Co-sensitization of metal based N719 and metal free D35 dyes: An effective strategy to improve the performance of DSSC. Mater. 111, 110589 (2021). https://doi.org/10.1016/J.OPTMAT.2020.110589
  25. Lee, H., Kim, J., Kim, D. Y. & Seo, Y. Co-sensitization of metal free organic dyes in flexible dye sensitized solar cells. Electron. 52, 103–109 (2018). https://doi.org/10.1016/j.orgel.2017.10.003
  26. Magne, C., Urien, M. & Pauporté, T. Enhancement of photovoltaic performances in dye-sensitized solar cells by co-sensitization with metal-free organic dyes. RSC Adv. 3, 6315–6318 (2013). https://doi.org/10.1039/c3ra41170b
  27. Kovash Jr., C. S., Hoefelmeyer, J. D. & Logue, B. A. TiO 2 compact layers prepared by low temperature colloidal synthesis and deposition for high performance dye-sensitized solar cells. Acta 67, 18–23 (2012). https://doi.org/10.1016/j.electacta.2012.01.092
  28. Cha, S. I. et al. Dye-sensitized solar cells on glass paper: TCO-free highly bendable dye-sensitized solar cells inspired by the traditional Korean door structure. Energy Environ. Sci. 5, 6071–6075 (2012). https://doi.org/10.1039/c2ee03096a
  29. Cataldo, F. A revision of the Gutmann donor numbers of a series of phosphoramides including TEPA. Chem. Bull. 4, 92–97 (2015). https://doi.org/10.17628/ECB.2015.4.92
  30. Slodek, A. et al. Dyes based on the D/A-acetylene linker-phenothiazine system for developing efficient dye-sensitized solar cells. Mater. Chem. C 7, 5830–5840 (2019). https://doi.org/10.1039/C9TC01727E
  31. Slodek, A. et al. Investigations of new phenothiazine-based com­pounds for dye-sensitized solar cells with theoretical insight. Materials 13, 2292 (2020). https://www.mdpi.com/1996-1944/13/10/2292
  32. Li, X., Wang, Y., Liu, Y. & Ge, W. Green, room-temperature, fast route for NH4Yb2F7:Tm3+ nanoparticles and their blue upconversion luminescence properties. Mater.111, 110605 (2021). https://doi.org/10.1016/j.optmat.2020.110605
  33. Li, S. et al. Comparative studies on the structure-performance relationships of phenothiazine-based organic dyes for dye-sensitized solar cells. ACS Omega 6, 6817–6823 (2021). https://doi.org/10.1021/acsomega.0c05887
  34. Zhang, C., Wang, S. & Li, Y. Phenothiazine organic dyes containing dithieno[3,2-b:2′,3′-d]pyrrole (DTP) units for dye-sensitized solar cells. Energy 157, 94–102 (2017). https://doi.org/10.1016/j.solener.2017.08.012
  35. Duvva, N., Eom, Y. K., Reddy, G., Schanze, K. S. & Giribabu, L. Bulky phenanthroimidazole-phenothiazine D-?-A based organic sensitizers for application in efficient dye-sensitized solar cells. ACS Appl. Energy Mater. 3, 6758–6767 (2020). https://doi.org/10.1021/acsaem.0c00892
  36. Huang, Z.-S., Meier, H. & Cao, D. Phenothiazine-based dyes for efficient dye-sensitized solar cells. Mater. Chem. C 4, 2404–2426 (2016). https://doi.org/10.1039/c5tc04418a
  37. Althagafi, I. & El-Metwaly, N. Enhancement of dye-sensitized solar cell efficiency through co-sensitization of thiophene-based organic compounds and metal-based N-719. J. Chem. 14, 103080 (2021). https://doi.org/10.1016/J.ARABJC.2021.103080
  38. Wu, Z., Wei, Y., An, Z., Chen, X. & Chen, P. Co-sensitization of N719 with an organic dye for dye-sensitized solar cells application. Korean Chem. Soc. 35, 1449–1454 (2014). https://doi.org/10.5012/bkcs.2014.35.5.1449
  39. Xu, Z. et al. DFT/TD-DFT study of novel T shaped phenothiazine-based organic dyes for dye-sensitized solar cells applications. Acta A Mol. Biomol. Spectrosc. 212, 272–280 (2019). https://doi.org/10.1016/J.SAA.2019.01.002
  40. Afolabi, S. O. et al. Design and theoretical study of phenothiazine-based low bandgap dye derivatives as sensitizers in molecular photovoltaics. Quantum Electron. 52, 1–18 (2020). https://doi.org/10.1007/s11082-020-02600-5
  41. Arunkumar, A., Shanavas, S. & Anbarasan, P. M. First-principles study of efficient phenothiazine-based D–π–A organic sensitizers with various spacers for DSSCs. Comput. Electron. 17,
    1410–1420 (2018). https://doi.org/10.1007/s10825-018-1226-5
  42. Nath, N. C. D., Lee, H. J. Choi, W.-Y. & Lee, J.-J. Electrochemical approach to enhance the open-circuit voltage (Voc) of dye-sensitized solar cells (DSSCs). Acta 109, 39–45 (2013). https://doi.org/10.1016/J.ELECTACTA.2013.07.057
Go to article

Authors and Affiliations

Paweł Gnida
1
ORCID: ORCID
Aneta Slodek
2
ORCID: ORCID
Ewa Schab-Balcerzak
2 1
ORCID: ORCID

  1. Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska St., 41-819 Zabrze, Poland
  2. Institute of Chemistry, University of Silesia, 9 Szkolna St., 40-006 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

In perovskite solar cells, series of symmetrical and asymmetrical imino-naphthalimides were tested as hole-transporting materials. The compounds exhibited high thermal stability at the temperature of the beginning of thermal decomposition above 300 °C. Obtained imino-naphthalimides were electrochemically active and their adequate energy levels confirm the application possibility in the perovskite solar cells. Imino-naphthalimides were absorbed with the maximum wavelength in the range from 331 nm to 411 nm and emitted light from the blue spectral region in a chloroform solution. The presented materials were tested in the perovskite solar cells devices with a construction of FTO/b-TiO2/m-TiO2/perovskite/ HTM/Au. For comparison, the reference perovskite cells were also performed (without hole-transporting materials layer). Of all the proposed materials tested as hole-transporting materials, the bis-(imino-naphthalimide) containing in core the triphenylamine structure showed a power conversion efficiency at 1.10% with a short-circuit current at 1.86 mA and an open-circuit voltage at 581 mV.
Go to article

Bibliography

  1. Gopikrishna, P., Meher, N. & Iyer P. K. Functional 1,8-naphthalimide AIE/AIEEgens: recent advances and prospects. ACS Appl. Mater. Interfaces 10, 12081–12111 (2018). https://doi.org/10.1021/acsami.7b14473
  2. Banerjee, S. et al. Recent advances in the development of 1,8-naphthalimide based DNA targeting binders, anticancer and fluorescent cellular imaging agents. Chem. Soc. Rev. 42, 1601–1618 (2013). https://doi.org/10.1039/C2CS35467E
  3. Poddar, M., Sivakumar, G. & Misra, R. Donor-acceptor substituted 1,8-naphthalimides: design, synthesis, and structure–property relationship J. Mater. Chem. C 7, 14798–14815 (2019). https://doi.org/10.1039/C9TC02634G
  4. Tomczyk, M. D. & Walczak K. Z. 1,8-Naphthalimide based DNA intercalators and anticancer agents. A systematic review from 2007 to 2017. Eur. J. Med. Chem. 159, 393–422 (2018). https://doi.org/10.1016/j.ejmech.2018.09.055
  5. Gan, J.-A. et al. 1,8-naphthalimides for non-doping OLEDs: the tunable emission color from blue, green to red. J. Photochem. Photobiol. 162, 399–406 (2004). https://doi.org/10.1016/S1010- 6030(03)00381-2
  6. Luo, S. et al. Novel 1,8-naphthalimide derivatives for standard-red organic light-emitting device applications. J. Mater. Chem. C 3, 525–5267 (2015). https://doi.org/10.1039/C5TC00409H
  7. Zhang, X. et al. A 1,8-naphthalimide based small molecular acceptor for polymer solar cells with high open circuit voltage, J. Mater. Chem. C 3, 6979–6985 (2015). https://doi.org/10.1039/C5TC01148E
  8. Do, T. T. et al. Molecular engineering strategy for high efficiency fullerene-free organic solar cells using conjugated 1,8-naphthal-imide and fluorenone building blocks. ACS Appl. Mater. Interfaces 9, 16967–16976 (2017). https://doi.org/10.1021/acsami.6b16395
  9. Yadagiri, B. et al. An all-small-molecule organic solar cell derived from naphthalimide for solution- processed high-efficiency non-fullerene acceptors. J. Mater. Chem. C 7, 709–717 (2019). https://doi.org/10.1039/C8TC05692G
  10. Torres-Moya, I. et al. Synthesis of D-π-A high-emissive 6-arylalkynyl-1,8-naphthalimides for application in organic field-effect transistors and optical waveguides Dyes and Pigm. 191, 109358 (2021). https://doi.org/10.1016/j.dyepig.2021.109358
  11. Gudeika, D. A review of investigation on 4-substituted 1,8-naphthalimide derivatives. Synth. Met. 262, 116328 (2020). https://doi.org/10.1016/j.synthmet.2020.116328
  12. Xie, L. et al. 5-Non-amino aromatic substituted naphthalimides as potential antitumor agents: Synthesis via Suzuki reaction, antiproliferative activity, and DNA-binding behavior. Bioorg. Med. Chem. 19, 961–967 (2011). https://doi.org/10.1016/j.bmc.2010.11.055
  13. Rykowski, S. et al. Design, synthesis, and evaluation of novel 3-carboranyl-1,8-naphthalimide derivatives as potential anticancer agents. Int. J. Mol. Sci. 22, 2772 (2021). https://doi.org/10.3390/ijms22052772
  14. Sivakumar, G. et al. Design, synthesis and characterization of 1,8-naphthalimide based fullerene derivative as electron transport material for inverted perovskite solar cells. Synth. Met. 249, 25–30 (2019). https://doi.org/10.1016/j.synthmet.2019.01.014
  15. Li, L. et al. Self-assembled naphthalimide derivatives as an efficient and low-cost electron extraction layer for n-i-p perovskite solar cells. Chem. Commun. 55, 13239–13242 (2019). https://doi.org/10.1039/C9CC06345E
  16. Agarwala, P. & Kabra, D. A review on triphenylamine (TPA) based organic hole transport materials (HTMs) for dye sensitized solar cells (DSSCs) and perovskite solar cells (PSCs): evolution and molecular engineering. J. Mater. Chem. A 5, 1348–1373 (2017). https://doi.org/10.1039/C6TA08449D
  17. Duan, L. et al. Facile synthesis of triphenylamine-based hole-trans-porting materials for planar perovskite solar cells. J. Power Sources 435, 226767 (2019). https://doi.org/10.1016/j.jpowsour.2019.226767
  18. Wu, G. et al. Triphenylamine-based hole transporting materials with thiophene-derived bridges for perovskite solar cells. Synth. Met. 261, 116323 (2020). https://doi.org/10.1016/j.synthmet.2020.116323
  19. Rezaei, F. & Mohajeri, A. Molecular designing of triphenylamine-based hole-transporting materials for perovskite solar cells Sol. Energy 221, 536–544 (2021). https://doi.org/10.1016/j.solener.2021.04.055
  20. Li, M. et al. Facile donor (D)-π-D triphenylamine-based hole transporting materials with different π-linker for perovskite solar cells. Sol. Energy 195, 618–625 (2020). https://doi.org/10.1016/j.solener.2019.11.071
  21. Bogdanowicz, K. A. et al. Selected electrochemical properties of 4,4’-((1E,1’E)-((1,2,4- Thiadiazole-3,5-diyl)bis(azaneylylidene))-bis(methaneylylidene))bis(N,N-di-p-tolylaniline) towards perovskite solar cells with 14.4% efficiency. Materials 13, 2440 (2020). https://doi.org/10.3390/ma13112440
  22. Ma, B.-B. et al. Visualized acid–base discoloration and optoelectronic investigations of azines and azomethines having double 4-[N,N-di(4-methoxyphenyl)amino]phenyl terminals. J. Mater. Chem. C 3, 7748–7755 (2015). https://doi.org/10.1039/C5TC00909J
  23. Korzec, M. et al. Synthesis and thermal, photophysical, electrochemical properties of 3,3-di[3- arylcarbazol-9-ulmethyl]oxetane derivatives. Materials 14, 5569 (2021). https://doi.org/10.3390/ma14195569
  24. Pająk, A. K. et al. New thiophene imines acting as hole transporting materials in photovoltaic devices. Energy Fuels 34, 10160–10169 (2020). https://doi.org/10.1021/acs.energyfuels.0c01698
  25. Kula, S. et al. 9,9’-bifluorenylidene derivatives as novel hole-transporting materials for potential photovoltaic applications. Dyes Pigm. 174, 108031 (2020). https://doi.org/10.1016/j.dyepig.2019.108031
  26. Derkowska-Zielinska, B. et al. Photovoltaic cells with various azo dyes as components of the active layer. Sol. Energy 203, 19–24 (2020). https://doi.org/10.1016/j.solener.2020.04.022
  27. Nitschke, P. et al. Spectroscopic and electrochemical properties of thiophene-phenylene based Schiff-bases with alkoxy side groups, towards photovoltaic applications. Spectrochim. Acta A 248, 119242 (2021). https://doi.org/10.1016/j.saa.2020.119242
  28. Sęk, D. et al. Polycyclic aromatic hydrocarbons connected with Schiff base linkers: Experimental and theoretical photophysical characterization and electrochemical properties Spectrochim. Acta A, 175, 168–176 (2017). https://doi.org/10.1016/j.saa.2016.12.029
  29. Korzec, M. et al. Live cell imaging by 3-imino-(2-phenol)-1,8-naphthalimides: The effect of ex vivo hydrolysis. Spectrochim. Acta A 238, 118442 (2020). https://doi.org/10.1016/j.saa.2020.118442
  30. Kotowicz, S. et al. Novel 1,8-naphthalimides substituted at 3-C position: Synthesis and evaluation of thermal, electrochemical and luminescent properties. Dyes Pigm. 158, 65–78 (2018). https://doi.org/10.1016/j.dyepig.2018.05.017
  31. Korzec, M. et al. Novel b-ketoenamines versus azomethines for organic electronics: characterization of optical and electrochemical properties supported by theoretical studies. J Mater Sci, 55, 3812–3832 (2020). https://doi.org/10.1007/s10853-019-04210-3
  32. Kotowicz, S. et al. New acceptor–donor–acceptor systems based on bis-(imino-1,8- naphthalimide). Materials 14, 2714 (2021). https://doi.org/10.3390/ma14112714
  33. Costa, J. S. C. et al. Optical band gaps of organic semiconductor materials Opt. Mater. 58, 51–60 (2016). https://doi.org/10.1016/j.optmat.2016.03.041
  34. Nitschke, P. et al. The effect of alkyl substitution of novel imines on their supramolecular organization, towards photovoltaic applications, Sol. Energy 221, 536–544.https://doi.org/10.1016/j.solener.2021.04.055
  35. Misra, A. et al. Electrochemical and optical studies of conjugated polymers for three primary colours. Indian J. Pure Appl. Phys. 43, 921–925 (2005).
  36. Kim, K. et al. Direct p-doping of Li-TFSI for efficient hole injection: Role of polaronic level in molecular doping. Appl. Surf. Sci. 480, 565–571 (2019).https://doi.org/10.1016/j.apsusc.2019.02.248
  37. Singh, R. & Parashar, M. Origin of Hysteresis in Perovskite Solar Cells in Soft-Matter Thin Film Solar Cells: Physical Processes and Device Simulation (AIP Publishing, on-line) (New York, 2020). https://doi.org/10.1063/9780735422414_001
  38. Li, B. et al. Insights into the hole transport properties of LiTFSI-doped spiro-OMeTAD films through impedance spectroscopy. J. Appl. Phys.128, 085501 (2020).https://doi.org/10.1063/5.0011868
  39. Abate, A. et al. Lithium salts “redox active” p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Phys. Chem. Chem. Phys., 15, 2572–2579 (2013). https://doi.org/10.1039/C2CP44397J
  40. Wang, S., Yan, W. & Meng, Y. S., Spectrum-dependent spiro- OMeTAD oxidization mechanism in perovskite solar cells. Appl. Mater. Interfaces 7, 24791–24798 (2015).https://doi.org/10.1021/acsami.5b07703
Go to article

Authors and Affiliations

Mateusz Korzec
1
ORCID: ORCID
Sonia Kotowicz
1
ORCID: ORCID
Agnieszka K. Pająk
1 2
ORCID: ORCID
Ewa Schab-Balcerzak
1 3
ORCID: ORCID

  1. Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, 9 Szkolna St., 40-007 Katowice, Poland
  2. Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymont St., 30-059 Krakow, Poland
  3. Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Skłodowska St., 41-819 Zabrze, Poland
Download PDF Download RIS Download Bibtex

Abstract

Three low molecular weight compounds bearing carbazole units (1,6-di{3-[2-(4-methylphenyl)vinyl]carbazol-9-yl}hexane and 9,9'-di{6-[3-(2-(4-methylphenyl)vinyl)-9-carbazol-9-yl]hexyl}-[3,3']bicarbazole) and phenoxazine structure (10-butyl-3,7-diphenylphenoxazine) were tested as hole-transporting materials in perovskite solar cells. Two of them were successfully applied as hole transporting layers in electroluminescent light emitted diodes. The examined compounds were high-thermally stable with decomposition temperature found at the range of 280–419 °C. Additionally, DSC measurement revealed that they can be converted into amorphous materials. The compounds possess adequate ionization potentials, to perovskite energy levels, being in the range of 5.15–5.36  eV. The significant increase in power conversion efficiency from 1.60% in the case of a device without hole-transporting layer, to 5.31% for device with 1,6-di{3-[2-(4-methylphenyl)vinyl]carbazol-9- yl}hexane was observed.

Go to article

Authors and Affiliations

K. Gawlińska-Nęcek
Zbigniew Starowicz
ORCID: ORCID
D. Tavgeniene
G. Krucaite
S. Grigalevicius
Ewa Schab-Balcerzak
ORCID: ORCID
M. Lipiński

This page uses 'cookies'. Learn more