Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a 3D distance measurement accuracy improvement for stereo vision systems using optimization methods A Stereo Vision system is developed and tested to identify common uncertainty sources. As the optimization methods are used to train a neural network, the resulting equation can be implemented in real time stereo vision systems. Computational experiments and a comparative analysis are conducted to identify a training function with a minimal error performance for such method. The offered method provides a general purpose modelling technique, attending diverse problems that affect stereo vision systems. Finally, the proposed method is applied in the developed stereo vision system and a statistical analysis is performed to validate the obtained improvements.

Go to article

Authors and Affiliations

J.C. Rodríguez-Quiñonez
O. Sergiyenko
W. Flores-Fuentes
M. Rivas-lopez
D. Hernandez-Balbuena
R. Rascón
P. Mercorelli
Download PDF Download RIS Download Bibtex

Abstract

When a frequency domain sensor is under the effect of an input stimulus, there is a frequency shift at its output. One of the most important advantages of such sensors is their converting a physical input parameter into time variations. In consequence, changes of an input stimulus can be quantified very precisely, provided that a proper frequency counter/meter is used. Unfortunately, it is well known in the time-frequency metrology that if a higher accuracy in measurements is needed, a longer time for measuring is required. The principle of rational approximations is a method to measure a signal frequency. One of its main properties is that the time required for measuring decreases when the order of an unknown frequency increases. In particular, this work shows a new measurement technique, which is devoted to measuring the frequency shifts that occur in frequency domain sensors. The presented research result is a modification of the principle of rational approximations. In this work a mathematical analysis is presented, and the theory of this new measurement method is analysed in detail. As a result, a new formalism for frequency measurement is proposed, which improves resolution and reduces the measurement time.

Go to article

Authors and Affiliations

Fabian N. Murrieta-Rico
Vitalii Petranovskii
Oleg Y. Sergiyenko
Daniel Hernandez-Balbuena
Lars Lindner

This page uses 'cookies'. Learn more