Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Black mold and green mold caused by Alternaria alternata and Penicillium digitatum, respectively, are the most important decay pathogens of tomato fruits during storage. Our research was aimed to control tomato phytopathogenic fungi A. alternata and P. digitatum in vitro and in vivo by using natural nanomaterials rosmarinic acid (RA-NPs) at concentrations of 0.3 and 0.6 mM, glycyrrhizic acid (GA-NPs) and glycyrrhizic acid ammounium salt (GAS-NPs) (0.1–0.2 mM). Characterizations of the tested nanoparticles were carried out by using dynamic light scattering which revealed that synthesized nanoparticles had particle sizes of less than 100 nm. In vitro studies revealed that the three tested nanoparticles reduced the growth of A. alternata and P. digitatum. Glycyrrhizic acid nanoparticles were the most effective in reducing the growth of the two tested pathogens followed by RA-NPs at 0.6 mM. Observations of A. alternata and P. digitatum by scanning electron microscopy (SEM) showed severe damage in the hyphae and deformities in the conidia due to the effect of the tested nanoparticles. In vivo results showed that, dipping tomato fruits as a post-harvest treatment in all of the tested nanoparticles at different concentrations, then stored at 10 ± 1°C and 90–95% relative humidity (RH) for 20 days greatly reduced the disease severity of infected fruits with the two tested pathogens. GA-NPs at 0.2 mM significantly reduced the development of black mold rot on tomato fruits. RA-NPs at 0.6 mM had the best effect in controlling P. digitatum of all naturally and artificially inoculated tomato fruits. Also, individual treatments of tomato fruits with RA-NPs, GA-NPs and GAS-NPs significantly reduced postharvest losses of fruit since they delayed decay and maintained fruit quality characteristics such as fruit firmness, titratable acidity and total soluble solids during cold storage.

Go to article

Authors and Affiliations

Fayz A. Abdel-Rahman
Ismail A.S. Rashid
Tahsin Shoala
Download PDF Download RIS Download Bibtex

Abstract

Nanodiagonastic methods in plant pathology are used for enhancing detection and identification of different plant pathogens and toxigenic fungi. Improvement of the specificity and efficiency of the polymerase chain reaction (PCR) by using some nanoparticles is emerging as a new area of research. In the current research, silver, zinc, and gold nanoparticles were used to increase the yield of DNA for two plant pathogenic fungi including soil-borne fungus Rhizoctonia solani and toxigenic fungus Alternaria alternata. Gold nanoparticles combined with zinc and silver nanoparticles enhanced both DNA yield and PCR products compared to DNA extraction methods with ALB buffer, sodium dodecyl sulfate, ALBfree from protinase K, ZnNPs and AgNPs. Also, by using ZnNPs and AgNPs the DNA yield was enhanced and the sensitivity of random amplified polymorphic DNA (RAPD) PCR products was increased. Application of nanomaterials in the PCR reaction could increase or decrease the PCR product according to the type of applied nanometal and the type of DNA template. Additions of AuNPs to PCR mix increased both sensitivity and specificity for PCR products of the tested fungi. Thus, the use of these highly stable, commercially available and inexpensive inorganic nano reagents open new opportunities for improving the specificity and sensitivity of PCR amplicon, which is the most important standard method in molecular plant pathology and mycotoxicology.
Go to article

Authors and Affiliations

Fahad A. Al-Dhabaan
Heba Yousef
Tahsin Shoala
Jumana Shaheen
Yousra El Sawi
Tasneem Farag

This page uses 'cookies'. Learn more