Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the assessment of reliability depending on the reinforcement cover thickness for elements subject to bending. Based on the experimental tests of 12 reinforced concrete beams subjected to four-point bending the numerical model was validated. In the next steps this numerical model was used for the Monte Carlo simulation. During the analyses the failure probability and the reliability index were determined by two methods – using probabilistic method –FORMand fully probabilistic method Monte Carlo with the use of variance reduction techniques by Latin hypercube sampling (LHS). The random character of input data – compressive strength of concrete, yield strength of steel and effective depth of reinforcement were assumed in the analysis. Non-parametric Spearman rank correlation method was used to estimate the statistical relationship between random variables. Analyses have shown a significant influence of the random character of effective depth on reliability index and the failure probability of bending elements.
Go to article

Bibliography

[1] ATENA, Program Documentation, Prague, 2014.
[2] L. Buda-Ozóg, “Diagnostics of technical condition of concrete elements using dynamic methods”, PhD thesis, Rzeszow University of Technology, Poland 2008 (in Polish).
[3] L. Buda-Ozóg, K. Sienkowska, and I. Skrzypczak, “Reliability of beams subjected to torsion designed using STM”, Archives of Civil Engineering, vol. 66, no. 3, pp. 555–573, 2020. DOI: 10.24425/ace.2020.134413.
[4] C. Cornell, “A probability based structural code”, American Concrete Institute Journal, no. 66, pp. 974–985, 1969.
[5] EN 1990, Eurocode – Basis of structural design. Brussels: CEN, 2002.
[6] FREET, Program Documentation, Prague 2011.
[7] GUNB reports on construction disasters from 1995 to 2009, conference materials “Construction failures”, Szczecin, 2011 (in Polish).
[8] D. Huntington and C. Lyrintzis, “Improvements to and limitations of Latin hypercube sampling. Probabilistic Engineering Mechanics”, vol. 13, no. 4, pp. 245–253, 1997.
[9] ISO 13822, Bases for design of structures – Assessment of existing structures. Geneve, Switzerland: ISO TC98/SC2, 2010.
[10] ISO 2394, General principles on reliability for structures, 2010.
[11] A.S. Nowak and K.R. Collins, “Reliability of Structures”, McGraw-Hill, p. 338, New York, 2000.
[12] Probabilistic Model Code, JCSS working material, http://www.jcss.ethz.ch/ (online), 2012.
[13] SARA, Program Documentation, Prague, 2015.
[14] I. Skrzypczak, L. Buda-Ozóg, and M. Słowik, “Projektowanie elementów żelbetowych z założoną niezawodnością”, Czasopismo Inżynierii Lądowej, Środowiska i Architektury, vol. 61, no 3/II, pp. 503–510, 2014, DOI: 10.7862/rb.2014.116.
[15] A.C.W.M. Vrouwenvelder and N. Scholten, “Assessment criteria for existing structures”, Structural Engineering International, vol. 20, no. 1, pp. 62–65, 2010.
[16] K. Winkelman, “Obliczanie niezawodności konstrukcji inżynierskich metodami symulacyjnymi oraz metodą powierzchni odpowiedzi”, PhD thesis, Gdansk University of Technology, Gdansk, 2013.
[17] S. Wolinski, “Probabilistyczne podstawy współczesnych norm projektowania”, Zeszyty Naukowe Politechniki Rzeszowskiej, vol. 58, pp. 269–288, 2011.

Go to article

Authors and Affiliations

Katarzyna Sieńkowska
1
ORCID: ORCID
Lidia Buda-Ożóg
1
ORCID: ORCID

  1. Rzeszów University of Technology, Faculty of Civil and Environmental Engineering and Architecture, Powstancow Warszawy 12, 35-859 Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents probabilistic assessment of load-bearing capacity and reliability for different STM of beams loaded with a torsional and bending moment. Three beams having different reinforcement arrangement obtained on the basis of STM but the same overall geometry and loading pattern were analysed. Stochastic modelling of this beams were performed in order to assess probabilistic load-bearing capacity. In the analysis, the random character of input data - concrete and steel was assumed. During the randomization of variables the Monte Carlo simulation with the reduce the number of simulations the Latin Hypercube Sampling (LHS) method was applied. The use of simulation methods allows for approximation of implicit response functions for complex in description and non-linear reinforced concrete structures. On the basis of the analyses and examples presented in the paper, it has been shown that the adoption of different ST models determines the different reliability of the analysed systems and elements.

Go to article

Authors and Affiliations

Lidia Buda-Ożóg
ORCID: ORCID
Katarzyna Sieńkowska
ORCID: ORCID
Izabela Skrzypczak
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

RC flat slabs are one of the most popular and effective methods of shaping plates in buildings. Although failures of entire structures are relatively rare, they cannot be excluded from the occupancy cycle of the facility. The research analysis presented in this paper is an attempt to understand more precisely the phenomena that occur in the RC flat slab system and to assess the influence of the additional protection of the flat slabs against progressive collapse in the case of failure of one of the supports. The results were obtained from destructive experimental investigations of a flat reinforced concrete slab made in scale 1:3. The collapse in the analysed model was simulated by removing three edge columns and additional loading by means of hydraulic actuator. In place of the columns removed, differential tie reinforcement was applied. The results obtained confirm that the structure achieved a much higher ultimate load than the one resulting from the design calculations.
Go to article

Authors and Affiliations

Lidia Buda-Ożóg
1
ORCID: ORCID
Joanna Zięba
1
ORCID: ORCID
Katarzyna Sieńkowska
1
ORCID: ORCID
Damian Nykiel
1
ORCID: ORCID

  1. Department of Building Structures, Faculty of Civil Engineering and Environmental Engineering, Rzeszow University of Technology, Poznańska 2, Rzeszow 35-084, Poland

This page uses 'cookies'. Learn more