Search results

Filters

  • Journals
  • Date

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Noise spectroscopy as a highly sensitive method for non-destructive diagnostics of semiconductor devices was applied to solar cells based on crystalline silicon with a view to evaluating the quality and reliability of this solar cell type. The experimental approach was used in a reverse-biased condition where the internal structure of solar cells, as well as pn-junction itself, was electrically stressed and overloaded by a strong electric field. This gave rise to a strong generation of a current noise accompanied by local thermal instabilities, especially in the defect sites. It turned out that local temperature changes could be correlated with generation of flicker noise in a wide frequency range. Furthermore, an electrical breakdown in a nonstable form also occurred in some specific local regions what created micro-plasma noise with a two-level current fluctuation in the form of a Lorentzian-like noise spectrum. The noise research was carried out on both of these phenomena in combination with the spectrally-filtered electroluminescence mapping in the visible/near-infrared spectrum range and the dark lock-in infrared thermography in the far-infrared range. Then the physical origin of the light emission from particular defects was searched by a scanning electron microscope and additionally there was performed an experimental elimination of one specific defect by the focused ion beam milling.
Go to article

Authors and Affiliations

Lubomir Skvarenina
Robert Macku

This page uses 'cookies'. Learn more