Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 20
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The study was performed on 21 H-F calves divided into 3 groups of 7 animals each. The first group was composed of calves whose mothers did not receive an injection of Se preparation. The second and third groups consisted of calves whose mothers were administered injections of Se and vitamin E in a single dose of 10 ml and 30 ml, 10 days before the expected parturition date. 24 hours after birth, blood samples were collected from all calves to determine Se, Fe and IgG concentrations and the activity of GSH-Px and GGT. The results of the study indicate that the administration of a single-dose Se supplement to cows in late pregnancy increases Se concentration in calves and promotes passive transfer of immunity from the mother to offspring.
Go to article

Authors and Affiliations

K. Żarczyńska
A. Snarska
L. Rytel
P. Sobiech
Download PDF Download RIS Download Bibtex

Abstract

Cytological evaluation of bone marrow smears stained by May-Grünwald Giemsa method was performed. The smears came from 20 fallow deer (Dama dama) 3 days old divided into 2 groups each consisting of 10 animals. The experimental group (E) received intramuscularly selenium and vitamin E at a dose of 3.0 ml (tocopherol acetate – 50 mg, sodium selenite – 0.5 mg, solvent - 1 ml) in the 3rd day of age. The control group (C) did not receive any supplementation or placebo. For hematological analyzes blood was collected three times: on 0, 15th and 25th day of the experiment. Serum concentration of selenium and vitamin E was determined using high perfor- mance liquid chromatography and glutathione peroxidase activity (GSH-Px) by kinetic method. On the 15th day after supplementation, a statistically significant increase in the percentage of erythroblastic cell line was observed in bone marrow smears. At that time, the increase in GSH-Px activity in the E group was also observed, reaching the value of 165.3 U/gHb, which was statisti- cally significant. The percentage of proerythroblasts (8.23% in group E and 5.02% in group C) differed significantly between groups at the 25th day after supplementation. This study revealed that supplementation of selenium and vitamin E resulted in an increase in the number of erythro- cytes to an average of 13.5 (˟ 10¹²/l) in the experimental group on 25th day with a significant increase in hemoglobin to 193 g/l in the experimental group.

Go to article

Authors and Affiliations

A. Snarska
D. Wysocka
L. Rytel
K. Żarczyńska
P. Sobiech
S. Gonkowski
Download PDF Download RIS Download Bibtex

Abstract

The research was conducted on 40 young alpine goats (kids) divided into two groups. First group consisted of 20 kids demonstrating clinical signs of muscular dystrophy. Second group was a control and consisted of 20 animals that received intramuscular injection (2ml per animal) of vitamin E and selenium preparation containing in 1ml 50 mg of tocopherol acetate, 0.5mg of sodium selenite and solvent on 2nd day of life. The kids were clinically examined and blood for laboratory analyses was sampled three times from day 5 of their life in 10 day intervals. In addition, six 24 days old kids demonstrating clinical signs of muscular dystrophy and six control kids were subjected to biceps femoris biopsy.

Serum total protein, glucose, triglycerides, cholesterol as well as AST, CK and LDH were determined in all the animals. In addition, the activity of glutathione peroxidase (GSH-Px) was determined in whole blood and serum concentrations of selenium and vitamin E were determined in 6 kids from each group. Total lactate dehydrogenase activity and its separation into isoenzymatic fractions were determined in the collected biopsy material. The muscle samples collected were additionally subjected to histopathological examination consisting of HE staining and HBFP staining to detect necrotic muscle fibers.

Symptoms of muscular dystrophy began to appear in the first group between 17 and 23 days of age and included tremors of the limbs, poor posture, stilt gait and increased time of laying. The control animals did not show any symptoms of the disease during the experiment. Hypoproteinemia, hypoglycemia, cholesterol reduction and elevated triglycerides level associated with lipolysis of adipose tissue have been found in the sick kids. A significant decrease in selenium, vitamin E and activity of glutathione peroxidase levels was observed in the kids with symptoms of muscular dystrophy. The activity of AST, CK and LDH was significantly higher in the animals with symptoms of the disease as well. Five isoenzymes were obtained in the electrophoretic separation of lactate dehydrogenase into isoenzymatic fractions in the muscle tissue. LDH4 and LDH5 isoenzymes were dominating, and a significant increase in LDH5 fraction of the sick animals was also observed. Histopathological examination of muscle samples from sick animals revealed changes characteristic for the presence of Zenker necrosis.

Go to article

Authors and Affiliations

P. Sobiech
K. Żarczyńska
Download PDF Download RIS Download Bibtex

Abstract

During the transition period, the cow’s body activates adaptive mechanisms aimed at adjusting to the changing demand for energy and nutrients, which are necessary for the growing fetus and the subsequent start of milk production. This time is also associated with an increased risk of metabolic diseases and reproductive disorders.
Our study aimed to identify prepartum and postpartum biochemical markers and weight loss patterns that could differentiate cows that would exhibit ultrasonographic signs of liver fatty infiltration during the latter half of the transition period.
The study was performed in a single herd of Holstein-Friesian cows and the animals were divided into two groups: CON (n=13) – cows without ultrasonographic signs of fatty liver, and FL (n=16) – cows with ultrasonographic signs of fatty liver. Backfat thickness and specific biochemical parameters were measured weekly from one week before parturition to 9 weeks postpartum.
Our study highlights the importance of using a combination of monitoring methods to assess the metabolic status of transition dairy cattle. The results showed that ultrasound measurements of backfat thickness, blood NEFA levels, glucose concentration, and AST activity were all different (p<0.05) between the control and FL groups, indicating the usefulness of these parameters in monitoring the health status of transition cows. Additionally, the results suggest that high prepartum glucose levels (4.99 mmol/l) could serve as a potential marker for future FL, while the elevated NEFA levels (0.51 mmol/l) and decreased AST activity (80.56 u/l) in FL animals indicate their potential as indicators of lipid mobilization and liver structural damage, respectively.
Go to article

Bibliography

1. Abuelo A, Hernández J, Benedito JL, Castillo C (2016) Association of oxidative status and insulin sensitivity in periparturient dairy cat-tle: an observational study. J Anim Physiol Anim Nutr (Berl) 100: 279-286.
2. Akbar H, Grala TM, Vailati Riboni M, Cardoso FC, Verkerk G, McGowan J, Macdonald K, Webster J, Schutz K, Meier S, Matthews L, Roche JR, Loor JJ (2015) Body condition score at calving affects systemic and hepatic transcriptome indicators of inflammation and nu-trient metabolism in grazing dairy cows. J Dairy Sci 98: 1019-1032.
3. Angeli E, Rodríguez FM, Rey F, Santiago G, Matiller V, Ortega HH, Hein GJ (2019) Liver fatty acid metabolism associations with re-productive performance of dairy cattle. Anim Reprod Sci 208: 106104.
4. Aschenbach JR, Kristensen NB, Donkin SS, Hammon HM, Penner GB (2010) Gluconeogenesis in dairy cows: the secret of making sweet milk from sour dough. IUBMB Life 62: 869-877.
5. Bezerra LR, de Oliveira Neto CB, de Araujo MJ, Edvan RL, de Oliveira WD, Pereira FB (2014) Major metabolic diseases affecting cows in transition period. Int J Biol 6: 85-94.
6. Bobe G, Young JW, Beitz DC (2004) Invited review: pathology, etiology, prevention, and treatment of fatty liver in dairy cows. J Dairy Sci 87: 3105-3124.
7. Braun U (2009) Ultrasonography of the liver in cattle. Vet Clin North Am Food Anim Pract 25: 591-609.
8. Brethour JR (1992) The repeatability and accuracy of ultrasound in measuring backfat of cattle. J Anim Sci 70: 1039-1044.
9. Ceciliani F, Lecchi C, Urh C, Sauerwein H (2018) Proteomics and metabolomics characterizing the pathophysiology of adaptive reactions to the metabolic challenges during the transition from late pregnancy to early lactation in dairy cows. J Proteomics 178: 92-106.
10. Contreras GA, Sordillo LM (2011) Lipid mobilization and inflammatory responses during the transition period of dairy cows. Comp Immunol Microbiol Infect Dis 34: 281-289.
11. Esposito G, Irons PC, Webb EC, Chapwanya A (2014) Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. Anim Reprod Sci 144: 60-71.
12. Gerspach C, Imhasly S, Gubler M, Naegeli H, Ruetten M, Laczko E (2017a) Altered plasma lipidome profile of dairy cows with fatty liver disease. Res Vet Sci 110: 47-59.
13. Gerspach C, Imhasly S, Klingler R, Hilbe M, Hartnack S, Ruetten M (2017b). Variation in fat content between liver lobes and compari-son with histopathological scores in dairy cows with fatty liver. BMC Vet Res 13: 98.
14. Hussein HA, Thurmann JP, Staufenbiel R (2020) 24-h variations of blood serum metabolites in high yielding dairy cows and calves. BMC Vet Res 16: 327.
15. Hussein HA, Westphal A, Staufenbiel R (2013) Relationship between body condition score and ultrasound measurement of backfat thickness in multiparous Holstein dairy cows at different production phases. Aust Vet J 91: 185-189.
16. Jawor P, Brzozowska A, Słoniewski K, Kowalski ZM, Stefaniak T (2016) Acute phase response in the primiparous dairy cows after re-peated percutaneous liver biopsy during the transition period. Pol J Vet Sci 19: 393-399.
17. Jorritsma R, Jorritsma H, Schukken YH, Bartlett PC, Wensing T, Wentink GH (2001) Prevalence and indicators of post partum fatty in-filtration of the liver in nine commercial dairy herds in the Netherlands Livest Prod Sci 68: 53-60.
18. Kida K (2003) Relationships of metabolic profiles to milk production and feeding in dairy cows. J Vet Med Sci 65: 671-677.
19. Komeilian MM, Sakha M, Nadalian MG, Veshkini A (2011) Hepatic ultrasonography of dairy cattle in postpartum period: finding the sonographic features of fatty liver syndrome. Aust J Basic Appl Sci 5: 701-706.
20. Luke TD, Rochfort S, Wales WJ, Bonfatti V, Marett L, Pryce JE.(2019) Metabolic profiling of early-lactation dairy cows using milk mid-infrared spectra. J Dairy Sci 102: 1747-1760.
21. Melendez P, Whitney M, Williams F, Pinedo P, Manriquez D, Moore SG, Lucy MC, Pithua P, Poock SE (2018) Technical note: Evalua-tion of fine needle aspiration cytology for the diagnosis of fatty liver in dairy cattle. J Dairy Sci 101: 4483-4490.
22. Oetzel GR (2007) Herd-level ketosis – diagnosis and risk factors. American Association of Bovine Practitioners 40th Annual Conf., Vancouver, BC 67-97.
23. Ospina PA, Nydam DV, Stokol T, Overton TR (2010) Associations of elevated nonesterified fatty acids and beta-hydroxybutyrate con-centrations with early lactation reproductive performance and milk production in transition dairy cattle in the northeastern United States. J Dairy Sci 93: 1596-1603
24. Pires JA, Delavaud C, Faulconnier Y, Pomiès D, Chilliard Y (2013) Effects of body condition score at calving on indicators of fat and protein mobilization of periparturient Holstein-Friesian cows. J Dairy Sci 96: 6423-6439.
25. Puppel K, Kuczyńska B (2016) Metabolic profiles of cow’s blood; a review. J Sci Food Agric 96: 4321-4328.
26. Raboisson D, Mounié M, Maigné E (2014) Diseases, reproductive performance, and changes in milk production associated with sub-clinical ketosis in dairy cows: a meta-analysis and review. J Dairy Sci 97: 7547-7563.
27. Raschka C, Ruda L, Wenning P, von Stemm CI, Pfarrer C, Huber K, Meyer U, Dänicke S, Rehage J (2016) In vivo determination of subcutaneous and abdominal adipose tissue depots in German Holstein dairy cattle. J Anim Sci 94: 2821-2834.
28. Redfern EA, Sinclair LA, Robinson PA (2021) Dairy cow health and management in the transition period: The need to understand the human dimension. Res Vet Sci 137: 94-101.
29. Reynolds CK, Aikman PC, Lupoli B, Humphries DJ, Beever DE (2003) Splanchnic metabolism of dairy cows during the transition from late gestation through early lactation. J Dairy Sci 86: 1201-1217.
30. Roche JR, Friggens NC, Kay JK, Fisher MW, Stafford KJ, Berry DP (2009) Invited review: Body condition score and its association with dairy cow productivity, health, and welfare. J Dairy Sci 92: 5769-5801.
31. Schröder UJ, Staufenbiel R (2006) Invited review: Methods to determine body fat reserves in the dairy cow with special regard to ultra-sonographic measurement of backfat thickness. J Dairy Sci 89: 1-14.
32. Sejersen H, Sørensen MT, Larsen T, Bendixen E, Ingvartsen KL (2012) Liver protein expression in dairy cows with high liver triglycer-ides in early lactation. J Dairy Sci 95: 2409-2421.
33. Siachos N, Oikonomou G, Panousis N, Banos G, Arsenos G, Valergakis GE (2021) Association of body condition score with ultra-sound measurements of backfat and longissimus dorsi muscle thickness in periparturient Holstein cows. Animals (Basel) 11: 818.
34. Stengärde L, Tråvén M, Emanuelson U, Holtenius K, Hultgren J, Niskanen R (2008) Metabolic profiles in five high-producing Swedish dairy herds with a history of abomasal displacement and ketosis. Acta Vet Scand 50: 31
35. Strieder-Barboza C, Zondlak A, Kayitsinga J, Pires AF, Contreras GA (2015) Lipid mobilization assessment in transition dairy cattle us-ing ultrasound image biomarkers. Livest. Sci 177: 159-164.
36. Stojevic Z, Piršljin J, Milinkovic-Tur S, Zdelar-Tuk M, Ljubic BB (2005) Activities of AST, ALT and GGT in clinically healthy dairy cows during lactation and in the dry period. Vet Arhiv 75: 67-73.
37. Tharwat M (2012) Ultrasonography as a diagnostic and prognostic approach in cattle and buffaloes with fatty infiltration of the liver. Pol J Vet Sci 15: 83-93.
38. Tharwat M, Endoh D, Oikawa S (2012) Hepatocyte apoptosis in dairy cows with fatty infiltration of the liver. Res Vet Sci 93: 1281-1286.
39. van Dorland HA, Richter S, Morel I, Doherr MG, Castro N, Bruckmaier RM (2009) Variation in hepatic regulation of metabolism dur-ing the dry period and in early lactation in dairy cows. J Dairy Sci 92: 1924-1940.
Go to article

Authors and Affiliations

D. Grzybowska
1
P. Sobiech
1
D. Tobolski
1

  1. Department and Clinic of Internal Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

The study was conducted on 26 male, 30 days-old goats, separated from their mothers, divided into two equal groups: I - control and II - experimental, consisting of 13 animals each. All animals were fed with milk replacer, experimental group received additionally 50 g/kg body weight, additive of HMB, for 60 days. The following features were analyzed: body weight, daily increases of body weight, as well as hematological and biochemical blood features. Differences in body weight were found, between experimental and control group, after 60 days of experiment 0.57 kg (p≤0.01). The daily weight gain of experimental animals was higher in comparison with control group. Significant differences were also noted in results of hematological and biochemical blood parameters. Experimental animals showed a higher level of red blood cells as well as number of lymphocytes in comparison with the control group, (p≤0.01).Significant changes were also observed in the level of triglycerides, inorganic phosphorus and protein between both groups. The acid-base balance parameters and ionogram, showed a higher pH level (p≤0.05) HCO – act., HCO – std., BE, ctCO , O sat, K+, Cl– (p≤0.01), while the anion gap (AG) and Na+ were significantly lower in control group (p≤0.01).

Go to article

Authors and Affiliations

K. Cebulska
P. Sobiech
S. Milewski
K. Ząbek
Download PDF Download RIS Download Bibtex

Abstract

Selenium deficiency is a common nutritional disorder in dairy cattle globally. However, sele- nium supplementation can lead to selenium toxicity. This study evaluated a novel, low-toxicity selenium supplement, selenitetriglycerides, to determine its efficacy and safety in dairy cows. The study was conducted on 12 Holstein Friesian cows divided in two equal groups (control group without supplementation of selenium and experimental group with supplementation of selenitetriglycerides). Experimental cows (n=6) were orally administered 300 mg/cow/day of selenitetriglycerides for 14 days (days 1-14) and then monitored for a further 14 days (days 15-28). Blood from both groups of cows was sampled for determination of selenium concentra- tions, activity of aspartate aminotransferase, creatine kinase, lactate dehydrogenase, gamma-glutamyl transferase, concentrations of triglycerides, cholesterol, non-esterified fatty acids, glucose, total protein, urea, creatinine and hematological parameters. Serum selenium concentra- tions in the experimental group increased significantly on day 2 (from 64.92±6.89 μg/L to 127.95±13.75 μg/L), peaked on day 7 (266.22±14.21 μg/L) and remained significantly above the initial baseline values (day 1) for 28 days. Serum selenium concentrations in the control group did not change significantly during the 28 day period (65.22 μg/L on 1st day and 64,35 μg/L on 28th day) and were significantly lower than those in the experimental group from day 2 to day 28. The results of clinical examinations, analyses of hematological parameters, and liver and kidney function tests showed that selenitetriglycerides had no adverse effect on the health or on the metabolic or haematological statuses of the cows. These findings indicate that sele- nitetriglycerides are safe and effective selenium supplements for cattle.

Go to article

Authors and Affiliations

K. Żarczyńska
P. Sobiech
J. Mee
J. Illek
Download PDF Download RIS Download Bibtex

Abstract

The study aimed to determine the content of selenium (Se), zinc (Zn), copper (Cu) and cadmium (Cd) in the liver of predominantly plant-eating omnivore wild boar (Sus scrofa), predominantly meat-eating omnivore red fox (Vulpes vulpes) and herbivore red deer (Cervus elaphus), from North-Eastern Poland (Warmia and Mazury), in order to verify the distribution of these elements in the trophic pyramid. Furthermore, the study was used to assess the risk of eating venison. Samples were analyzed using atomic absorption spectrophotometry. The average concentration of Se was 3.9 (p<0.001) and 1.8-fold higher (p<0.001) in the wild boar and red fox, respectively, in comparison to the red deer, and 2.1-fold higher in the wild boar comparing to the red fox (p<0.001). There was no difference in the average concentration of Zn. The average concentration of Cu was 9.3. Concentration of this element was 5.4-fold higher in red deer in comparison to red fox (p<0.001) and 9,34-fold higher than in wild boar (p<0.001).
The average concentration of Cd was 1.9-fold higher in wild boar in comparison to the red fox (p<0.029). Correlation between Cu and Cd concentrations was also observed in the case of the red deer and red fox, while no such correlations were observed between the tested elements in the wild boar. In conclusion, the liver concentrations of these heavy metals in selected wild animas species from the hunting areas of Warmia and Mazury, do not exceed standard safe values for consumers. Moreover, the wild red deer population in North-Eastern Poland is significantly Se deficient.
Go to article

Bibliography


Abdelghany AE, Elkhaiat HM (2015) The importance of copper and the effects of its deficiency and toxicity in animal health. Int J Livest Res 5: 1-20.
Amici A, Danieli PP, Russo C, Primi R, Ronchi B (2012) Concentrations of some toxic and trace elements in wild boar (Sus scrofa) organs and tissues in different areas of the Province of Viterbo, Central Italy. Ital J Anim Sci 11: 65.
Balicka-Ramisz A, Pilarczyk B, Ramisz A, Pilarczyk R, Nader K (2010) Selenium concentrations in the liver, kidneys, and muscles in Silver foxes (Vulpes vulpes). Bull Vet Inst Pulawy 54: 265-267.
Bednarek D, Bik D (1994) Influence of selenium on animals’ health. Part II. Result of deficiency (In Polish). Życie Wet 7: 269-272.
Brightling P (1983) Enzootic ataxia in lambs and kids in Saskatchewan. Can Vet J 24: 164-165.
Chen J, Berry MJ (2003) Selenium and selenoproteins in the brain and brain diseases. J Neurochem 86: 1-12.
CSO (Central Statistical Office) 2017: Forestry 2017. Central Statistical Office Press: Warsaw, Poland, 2015: 163. Available online: https://stat.gov.pl/obszary-tematyczne/rolnictwo-lesnictwo/lesnictwo/lesnictwo-2015,1,11.html.
Cygan-Szczegielniak D, Stanek M, Stasiak K, Roslewska A, Janicki B (2018) The Content of Mineral Elements and Heavy Metals in the Hair of Red Deer (Cervus elaphus L.) from Selected Regions of Poland. Folia Biol (Kraków) 66: 133-142.
Falandysz J, Szymczyk-Kobrzyńska K, Brzostowski A, Zalewski K, Zasadowski A (2005) Concentrations of heavy metals in the tissues of Red Deer (Cervus elaphus) from the region of Warmia and Mazury, Poland. Food Addit Contam 22: 141-149.
Falandysz J, Zhang J, Wang YZ, Saba M, Krasińska G, Wiejak A, Li T (2015) Evaluation of mercury contamination in fungi boletus species from latosols, lateritic red earths, and red and yellow earths in the circum-Pacific mercuriferous belt of southwestern China. PLoS One 10: 0143608.
Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189: 147-63.
Georgiev D, Raichev E, Dospatliev L, Ivanova M, Peeva S, Kalcheva S, Georgieva K (2018) Heavy metals concentrations in organs of red foxes (Vulpes Vulpes Linnaeus, 1758) and golden jackals (Canis Aureus Linnaeus, 1758) inhabiting the “Sarnena Sredna Gora” mountain in Bulgaria. Bulg J Agric Sci 24: 119-124.
Haider S, Anis L, Batool Z, Sajid I, Naqvi F, Khaliq S, Ahme S (2015) Short term cadmium administration dose dependently elicits immediate biochemical, neurochemical and neurobehavioral dysfunction in male rats. Metab Brain Dis 30: 83.
Handeland K, Flåøyen A (2000) Enzootic ataxia in a Norwegian red deer herd. Acta Vet Scand 41: 329-331.
Heltai M, Markov G (2012) Red fox (Vulpes vulpes Linnaeus, 1758) as biological indicator for environmental pollution in Hungary. Bull Environ Contam Toxicol 89: 910-914.
Hosking WJ, Caple IW, Halpin CG, Brown AJP, Paynter DI, Conley DN, North-Coombes PL (1986) Copper. In: Trace elements for pas-tures and animals in victoria. Victorian Goverment Printing Office, Melbourne, p 9-13.
Ikeda M, Zhang ZW, Moon CS, Imai Y, Watanabe T, Shimbo S, Ma WC, Lee CC, Guo YL (1996) Background exposure of general popula-tion to cadmium and lead in Tainan City, Taiwan. Arch Environ Contam Toxicol 30: 121-126.
Kincaid RL (1999) Assessment of trace mineral status of ruminants, A review. J Anim Sci 77: 1-10.
Koenig KM, Rode LM, Cohen RD, Buckley WT (1997) Effects of diet and chemical form of selenium on sele- nium metabolism in sheep. J Anim Sci 75: 817-827.
Kuiters AT (1996) Accumulation of cadmium and lead in red deer and wild boar at the Veluwe, The Netherlands. Vet Q 18 Suppl 3: 134-135.
Medvedev N, Panichev N, Hyvarinen H (1997) Levels of heavy metals in seals of Lake Ladoga and the White Sea. Sci Total Environ 206: 95-105.
Meschy F (2010) Sulfur and trace elements. Selenium. In: Mineral nutrition of ruminants (in French). Editions Quae,Versaille, France, p 208.
Miao X, Sun W, Fu Y, Miao L, Cai L (2013) Zinc homeostasis in the metabolic syndrome and diabetes. Front Med 7: 31-52.
Millan J, Mateo R, Taggart MA, Lopez-Bao JV, Viota M, Monsalve L, Camarero PR, Blazquez E, Jimenez B (2008) Levels of heavy metals and metalloids in critically endangered Iberian lynx and other wild carnivores from Southern Spain. Sci Total Environ 399: 193-201.
Paniagua-Castro N, Escalona-Cardoso G, Chamorro-Cevallos G (2007) Glycine reduces cadmium-induced teratogenic damage in mice. Re-prod Toxicol 23: 92-97.
Pérez-López M, Soler F, Hernandez-Moreno D, Rigueira L, Fidalgo LE, López-Beceiro A (2015) Bioaccumulation of cadmium, lead and zinc in liver and kidney of red fox (Vulpes vulpes) from NW Spain: influence of gender and age. Toxicol Environ Chem 98: 1-9.
Pilarczyk B, Balicka-Ramisz A, Ramisz A, Adamowicz E, Bujak T, Tomza-Marciniak A , Bąkowska M, Da̧browska- -Wieczorek M (2008) Selenium concentration in roe deer from the Western Pomerania, Poland. Bull Vet Inst Pulawy 52: 631-633.
Pilarczyk B, Hendzel D, Pilarczyk R, Tomza-Marciniak A, Błaszczyk B, Dąbrowska-Wieczorek M, Bąkowska M, Adamowicz E, Bujak T (2010) Liver and kidney concentrations of selenium in wild boars (Sus scrofa) from northwestern Poland. Eur J Wildl Res 56: 797-802.
Piskorová L, Vasilková Z , Krupicer I (2003) Heavy metal residues in tissues of wild boar (Sus scrofa) and red fox (Vulpes vulpes) in the Central Zemplin region of the Slovak Republic. Czech J Anim Sci 48: 134-138.
Pollock B (2005) Trace elements status of white-tailed red deer (Odocoileus virginianus) and moose (Alces alces) in Nova Scotia. Canadian Cooperative Wildlife Health Centre – Newsletters & Publications, Lincoln, p 17.
Prasad AS (2013) Discovery of human zinc deficiency: Its impact on human health and disease. Adv Nutr 176-190.
Puls R (1994) Mineral levels in animal health: diagnostic data. 2nd ed., Sherpa International, Clearbrook, p 356.
Radwinska J, Zarczynska K (2014) Effects of mineral deficiency on the health of young ruminants. J Elem 19: 915-928.
Rous P, Jelínek P (2000) The effect of soil contamination on heavy metals content in some rabbit tissues. Czech J Anim Sci 45: 319-324.
Santiago D, Motas-Guzmán M, Reja A, María-Mojica P, Rodero B, García-Fernández AJ (1998) Lead and cadmium in red deer and wild boar from Sierra Morena Mountains (Andalusia, Spain). Bull Environ Contam Toxicol 61: 730-737.
Srebocan E, Pompe-Gotal J, Konjevic D, Crnic A, Popović N, Kolić E (2006) Cadmium in fallow deer tissue. Vet Arhiv 76: S143-S150.
Suran J, Prišć M, Rašić D, Srebocan E, Crnic A (2013) Malondialdehyde and heavy metal concentrations in tissues of wild boar (Sus scrofa L.) from central Croatia. J Environ Sci Health B 48: 147-152.
Toman R, Massányi P, Uhrín V (2002) Changes in the testis and epididymis of rabbits after an intraperitoneal and peroral administration of cadmium. Trace Elem Med 19: 114-117.
Underwood EJ, Suttle NF (1999) The Mineral Nutrition of Livestock. 3rd ed., CABI Publishing, Wallingford, Oxon, p 283-292.
Vikøren T, Bernhoft A, Waaler T, Handeland K (2005) Liver concentrations of copper, cobalt, and selenium in wild Norwegian red deer (Cervus elaphus). J Wildl Dis 41: 569-579.
Whanger P, Vendeland S, Park Y, Xia Y (1996) Metabolism of subtoxic levels of selenium in animals and humans. Ann Clin Lab Sci 26: 99-113.
Whitelaw A (1985) Copper deficiency in cattle and sheep. In Pract 7: 98-100.
Wieczorek J, Gambuś F (2005) Heavy metal distribution in organisms of hares, roe deer and foxes. Ecol Chem Eng S 12: 127-133.
Wilson PR, Grace ND (2001) A review of tissue reference values to assess the trace elements status of farmed red deer (Cervus elaphus). N Z Vet J 49: 126-132.
Wysocka D, Snarska A, Sobiech P (2019) Copper – an essential micronutrient for calves and adult cattle. J Elem 24: 101-110.
Go to article

Authors and Affiliations

K. Cebulska
1
P. Sobiech
1
D. Tobolski
1
D. Wysocka
1
P. Janiszewski
2
D. Zalewski
2
A. Gugołek
2
J. Illek
3

  1. Department of Internal Disease, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 14, 10-957 Olsztyn, Poland
  2. Department of Fur-bearing Animal Breeding and Game Management, Faculty of Animal Bioengineering, University of Warmia and Mazury, Olsztyn, Poland
  3. Clinic of Ruminant and Swine Diseases, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

Listeria (L.) monocytogenes is the causative agent of human listeriosis, the frequent sourceof which is food of animal origin. The aim of this study was to determine the influence of lactic acid bacteria (LAB) on the viability of Listeria in carrot juice and compound feed inoculated with L. monocytogenes. The effect of homogenous cultures of Streptococcus (Str.) lactis distaticus, Str. thermophilus and Lactobacillus (Lac.) lactis subsp. Cremoris and the combination of Str. thermophilus with Lac. bulgaricus in the carrot juice and compound feed samples on viability of inoculated L. monocytogenes were examined. There were no statistically significant differences in the results between the experimental groups. Regardless of used LAB, the results showed that the mean pH values in the carrot juice samples decreased from an initial pH of 6.7 to a mean value of 3.7 on 15 experimental day. The Listeria concentration in carrot juice samples decreased from average of 4.94 on day 5 to 3.24 log CFU/mL on day 10, and on day 15 achieved <0.01 log CFU/mL. In the compound feed trials, the pH decreased average from initial 6.5 to 3.7 on day 15. The concentration of Listeria decreased, similarly to the carrot juice samples, from average 5.0 on day 5 to 4.68 on day 10, and on day 15 achieved <0.01 log CFU/mL. In control samples, the number of Listeria increased throughout the study period and amounted to 9.2-9.84 log CFU/mL/g in all the samples. The activity of LAB has been shown to be antagonistic to L. monocytogenes. The results of the study did not show any clear differences between the used LAB strains in limiting the L. monocytogenes concentration. Based on the obtained results it can be conducted that the addition of LAB to animal food increases its microbiological safety.
Go to article

Bibliography

1. Bah A, Albano H, Bastos Barbosa J, Fhoula I, Gharbi Y, Najjari A, Boudabous A, Teixeira P, Ouzari HI (2019) Inhibitory effect of Lactobacillus plantarum FL75 and Leuconostoc mesenteroides FL14 against foodborne pathogens in artificially contaminated fermented tomato juice. Biomed Res Int 6937837.
2. Ben Taheur F, Kouidhi B, Fdhila K, Elabed H, Ben Slama R, Mahdouani K, Bakhrouf A, Chaieb K. (2016) Anti-bacterial and an-ti-biofilm activity of probiotic bacteria against oral pathogens. Microb Pathog 97: 213–220.
3. Boziaris IS, Nychas GJ (2007) Effect of nisin on growth boundaries of Listeria monocytogenes Scott A, at various temperatures, pH and water activities. Food Microbiol 23: 779-784.
4. Dhama K, Karthik K, Tiwari R, Shabbir MZ, Barbuddhe S, Malikf SV, Singh RK (2015) Listeriosis in animals, its public health signifi-cance (food-borne zoonosis) and advances in diagnosis and control: a comprehensive review. Vet Q 35: 211-235.
5. Farber J M, Coates F, Daley E (1992) Minimum water activity requirements for the growth of Listeria monocytogenes. Lett Appl Micro-biol 15: 103-105.
6. Farber JM, Zwietering M, Wiedmann M, Schaffner D, Hedberg CW, Harrison MA, Hartnett E, Chapman B, Donnelly CW, Goodburn KE, Gummalla S (2021) Alternative approaches to the risk management of Listeria monocytogenes in low risk foods. Food Control 123: 107601.
7. ISO 11133:2014 Microbiology of food, animal feed and water — Preparation, production, storage and performance testing of culture media. https://www.iso.org/obp/ui/#iso:std:iso: 11133:ed-1:v2
8. Li Q, Liu X, Dong M, Zhou J, Wang Y (2015) Aggregation and adhesion abilities of 18 lactic acid bacteria strains isolated from tradi-tional fermented food. Int J Agric Policy Res 3: 84–92.
9. Lim JY, Lee CL, Kim GH, Bang YJ, Rhim JW, Yoon KS (2020) Using lactic acid bacteria and packaging with grapefruit seed extract for controlling Listeria monocytogenes growth in fresh soft cheese. J Dairy Sci 103: 8761-8770.
10. Muñoz N, Sonar CR, Bhunia K, Tang J, Barbosa-Cánovas GV, Sablani SS (2019) Use of protective culture to control the growth of Listeria monocytogenes and Salmonella typhimurium in ready-to-eat cook-chill products. Food Control 102: 81-86.
11. Musabekova AA, Dmitrovskiy AM, Musabekov AA, Kurmangazin MS, Musabekova IN, Musabekov AA, Kurmangazin MS (2011) Epizootology of listeriosis in the Republic of Kazakhstan and Aktyubinsk Region. Epidemiol Infect Dis 16: 11-15.
12. Nilsson L, Hansen TB, Garrido P, Buchrieser C, Glaser P, Knochel S, Gram L, Gravesen A (2005) Growth inhibition of Listeria mon-ocytogenes by a nonbacteriocinogenic Carnobacterium piscicola. J Appl Microbiol 98: 172-183.
13. Pessoa WF, Melgaço AC, De Almeida ME, Ramos LP, Rezende RP, Romano CC (2017) In vitro activity of lactobacilli with probiotic potential isolated from cocoa fermentation against Gardnerella vaginalis. Biomed Res Int 2017: 3264194 .
14. Prezzi LE, Lee SH, Nunes VM, Corassin CH, Pimentel TC, Rocha RS, Ramos GL, Guimarães JT, Balthazar CF, Duarte MC, Freitas MQ, Esmerino EA, Silva MC, Cruz AG, Oliveira CA (2020) Effect of Lactobacillus rhamnosus on growth of Listeria monocytogenes and Staphylococcus aureus in a probiotic Minas Frescal cheese. Food Microbiol 92: 103557.
15. Ramos B, Brandão TR, Teixeira P, Silva CL (2020) Biopreservation approaches to reduce Listeria monocytogenes in fresh vegetables. Food Microbiol 85: 103282.
16. Riaz A, Noureen S, Liaqat I, Arshad M, Arshad N (2021) Antilisterial efficacy of Lactobacillus brevis MF179529 from cow: an in vivo evidence. BMC Comp Altern Med 19 : 37.
17. Saucedo-Reyes D, Carrillo-Salaza JA, Reyes-Santamaría MI, Saucedo-Veloz C (2012) Effect of pH and storage conditions on Listeria monocytogenes growth inoculated into sapote mamey (Pouteria sapota (Jacq) H.E. Moore & Stearn) pulp. Food Control 28: 110-117.
18. Serna-Cock L, Rojas-Dorado M, Ordonez-Artunduaga D, Garcia-Salazar A, Garcia-Gonzalez E, Aguilar CN (2019) Crude extracts of metabolites from co-cultures of lactic acid bacteria are highly antagonists of Listeria monocytogenes. Heliyon 5: e02448.
19. Śliżewska K, Chlebicz-Wójcik A, Nowak A (2021) Probiotic properties of new lactobacillus strains intended to be used as feed additives for monogastric animals. Probiotics Antimicrob Proteins 13: 146-162.
20. Wang Y , Wu J, Lv M, Shao Z, Hungwe M, Wang J, Bai X, Xie J, Wang Y, Geng W (2021) Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Front Bioeng Biotechnol 9: 612285.
21. Zapaśnik A, Sokołowska B, Bryła M (2022) Role of lactic acid bacteria in food preservation and safety. Foods 11: 1283.
22. Zilelidou EA, Skandamis PN (2018) Growth, detection and virulence of Listeria monocytogenes in the presence of other microorgan-isms: microbial interactions from species to strain level. Int J Food Microbiol 20: 10-25.
Go to article

Authors and Affiliations

A. Yeleussizova
1
P. Sobiech
2
N. Kaumenov
1
A. Batyrbekov
1
J. Błażejak-Grabowska
4
A. Isabaev
1
A. Platt-Samoraj
3

  1. Department of Veterinary Sanitation, A. Baitursynov Kostanay Regional University, Baitursynov street 47, 110000 Kostanay, Kazakhstan
  2. Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia-Mazury in Olsztyn, Oczapowskiego 14, 10-719 Olsztyn, Poland
  3. Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia-Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland
  4. Department of Commodity Science and Animal Improvement, Faculty of Animal Bioengineering, University of Warmia-Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

This study was carried out to evaluate the potential effects of 90 days-long dietary supple- mentation of probiotic and yeast culture on immunity condition of lambs. Fifteen Rahmani growing male lambs (about 5 months old and 23.21±2.75 kg body weight) were randomly allo- cated to three equal groups consisting of 5 animals each. The animals in the first group, served as a control (group C), were fed a basal diet without any supplementation. The lambs in the second and third group were fed the basal diet supplemented with probiotic (group Y) or yeast culture (group YC), respectively. The probiotic consisted of live yeast (Saccharomyces cerevisae) alone, while the yeast culture was composed of Saccharomyces cerevisiae and the media on which it was grown. In group Y and YC, each lamb was supplemented daily with 0.5 g and 7.0 g of live yeast and yeast culture, respectively. Blood samples were collected before feeding the supplements and then every 15 days until the day 90th. Total and differential leucocytic counts, total protein, albumin, IgA, IgG and IgM levels were measured in blood. There were insignificant (p>0.05) variations in the levels of total and differential leucocytic counts and total protein among the groups throughout the experiment. However, significant differences (p<0.05) were found in globulin, IgA, IgG and IgM in both (Y) and (YC) groups, but the effect of yeast culture seems to be better than that of the probiotic. In conclusions, the obtained results indicate that the tested probiotic and yeast culture improve the immunological status of lambs.

Go to article

Authors and Affiliations

M.M. Mahmoud
I.M.I. Youssef
M.M. Abd El-Tawab
H.A. Bakr
N.A. Eissa
M.S. Hassan
N.D. Giadinis
S. Milewski
W. Baumgartner
P. Sobiech

This page uses 'cookies'. Learn more