Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In April 2022, a celebration was held at the Adam Mickiewicz University in Poznań in honour of Prof. Jerzy Danielewicz, a brilliant Hellenist of international renown and one of the most prolific translators of Greek literature into Polish, on the golden jubilee of his doctorate. An account of this event is followed by the speech Prof. Danielewicz delivered on that occasion, in which he points to his place in the community of Classicists in Poznań across time.
Go to article

Authors and Affiliations

Piotr Stępień
1

  1. Instytut Filologii Klasycznej, Uniwersytet im. Adama Mickiewicza w Poznaniu
Download PDF Download RIS Download Bibtex

Abstract

The paper presents theoretical analysis and simulation results of the process of regular surface texture generation by grinding with the wheel shaped in a special way. Simple variant of the method consists in grinding with the wheel having single helical groove. Non-uniform load of abrasive grains located in different zones of the wheel circumference was described. Two models (deterministic and probabilistic) of the wheel active surface were developed, assuming different grain arrangement. Results of two models were compared and differences were explained.

Go to article

Authors and Affiliations

Piotr Stępień
Download PDF Download RIS Download Bibtex

Abstract

Professor Piotr Węgleński, who died on January 19, 2024 studied and worked at the University of Warsaw – at the Faculty of Biology and later at the Center for New Technologies. He was a member of the Polish Academy of Sciences and the vice-rector and later the rector of the University of Warsaw. He was responsible for introducing genetic engineering to Poland. He was a great boss – that is what we always called him – and a great academic teacher and was very active in popularizing science.
Go to article

Authors and Affiliations

Ewa Bartnik
1
Piotr P. Stępień
1

  1. Instytut Genetyki i Biotechnologii, Wydział Biologii, Uniwersytet Warszawski
Download PDF Download RIS Download Bibtex

Abstract

Phosphogypsum (PG) – a waste material generated in enormous amounts, accumulates a wide range of pollutants and thus represents a major environmental problem. Among the proposed potential strategies for PG management, none has been implemented on a large scale up to date. At the same time, the rapid depletion of phosphorite resources, used to manufacture most commercial phosphorus (P) fertilizers, poses unprecedented challenges for future agriculture and environmental protection. The aim of this study was to assess the possibility of using PG as a source of P for fertilizing plants. The effect of PG fertilization on the dry mass accumulation, P and sulphur (S) contents in soil and in the above-ground parts of plants, as well as on the level of heavy metal contaminations, were studied in the experimental model consisted of 12 genotypes of three lupine species – Lupinus angustifolius, Lupinus albus and Lupinus luteus. The PG application increased the content of both the available and active P in the soil. The increased P bioavailability resulted in an elevated uptake and intracellular content of this nutrient in the studied plant species in a dose- and variety-dependent manner. The heavy metals present in the waste did not affect their accumulation in the plants. The results indicate the possibility of using P forms present in PG as an alternative source of this component in plant nutrition, at the same time allowing elimination of the waste deposited on huge areas, which will certainly contribute to improving the quality of the environment.
Go to article

Bibliography

  1. Abdolzadeh, A., Wang, X., Veneklaas, E.J & Lambers, H. (2010). Effects of phosphorus supply on growth, phosphate concentration and cluster-root formation in three Lupinus species. Annals of Botany, 105, pp. 365–374. DOI:10.1093/aob/mcp297
  2. Abraham, E. M., Ganopoulos, I., Madesis, P., Mavromatis, A., Mylona, P., Nianiou-Obeidat, I., Parissi, Z., Polidoros, A., Tani, E. & Vlachostergios D. (2019). The Use of Lupin as a Source of Protein in Animal Feeding: Genomic Tools and Breeding Approaches. Int. J. Mol. Sci., 20, 851, pp. 1-27. DOI:10.3390/ijms20040851
  3. Al- Karaki, G.N. & Al-Omoush, M. (2002). Wheat response to phosphogypsum and mycorrhizal fungi in alkaline soil. J. Plant Nutr, 25(4), pp. 873–883. DOI:10.1081/PLN-120002966
  4. Al-Hwaiti M. & Al-Khashman O. (2015). Health risk assessment of heavy metals contamination in tomato and green pepper plants grown in soils amended with phosphogypsum waste materials. Environ Geochem Health, 37, pp. 287–304. DOI:10.1007/s10653-014-9646-z
  5. Ammar, R., El Samrani, A.G., Kazpard, V., Bassil, J., Lartiges, B., Saad, Z. & Chou L. (2013) Applying physicochemical approaches to control phosphogypsum heavy metal releases in aquatic environment. Environ Sci Pollut Res, 20, pp. 9014–9025. DOI:10.1007/s11356-013-1875-7.
  6. Aslam, M.M., Karanja, J.K., Yuan, W., Zhang, Q., Zhang, J. & Xu, W. (2021). Phosphorus uptake is associated with the rhizosheath formation of mature cluster roots in white lupin under soil drying and phosphorus deficiency. Plant Physiology and Biochemistry, 166, pp. 531–539. DOI:10.1016/j.plaphy.2021.06.022
  7. Bielecki, K. & Kulczycki G. (2012). Modyfikacja metody Buttersa i Chenery'ego oznaczania siarki ogólnej w roślinach i glebie, Przem. Chem., 91/5, pp. 688-691. (in Polish)
  8. Blum, S.C., Caires, E.F. & Alleoni, L.R.F. (2013). Lime and phosphogypsum application and sulfate retention in subtropical soils under no-till system, J. Soil Sci. Plant Nutr., 13(2), pp. 279-300. DOI:10.4067/S0718-95162013005000024
  9. Blum, S.C., Garbuio, F.J., Joris, H.A.W. & Caires E.F. (2014). Assessing available soil sulphur fromphosphogypsum applications in a no-till cropping system. Experimental Agriculture, 50(04), pp. 516-532. DOI:10.1017/S0014479714000015
  10. Bolland, M.D.A. (1997). Comparative phosphorus requirement of four lupin species. J Plant Nutr, 20, pp. 1239–1253. DOI:10.1080/01904169709365332
  11. Bouray, M., Moir, J., Condron, L. & Lehto N. (2020). Impacts of Phosphogypsum, Soluble Fertilizer and Lime Amendment of Acid Soils on the Bioavailability of Phosphorus and Sulphur under Lucerne (Medicago sativa). Plants, 9(7), pp. 883. DOI:10.3390/plants9070883
  12. Brennan, R.F. & Bolland, M.D.A. (2003) Lupinus luteus cv. Wodjil takes up more phosphorus and cadmium than Lupinus angustifolius cv. Kalya. Plant and Soil, 248, pp. 167–185.
  13. Caires, E.F., Kusman, M.T., Barth, G., Garbuio, F.J. & Padilha, J.M. (2004). Changes in soil chemical properties and corn response to lime and gypsum applications. Revista Brasileira de Ciência do Solo, 28, pp.125–136.
  14. Campbell, C.G., Garrido, F., Illera, V. & García-González, M.T. (2006). Transport of Cd, Cu and Pb in an acid soil amended with phosphogypsum, sugar foam and phosphoric rock. Applied Geochemistry, 21, pp. 1030–1043. DOI:10.1016/j.apgeochem.2006.02.023
  15. Carmeis Filho, A.C.A., Crusciol, C.A.C., Guimarães, T.M., Calonego, J.C. & Mooney, S.J. (2016). Impact of Amendments on the Physical Properties of Soil under Tropical Long-Term No Till Conditions. PLOS One, 11(12), pp. 1-21. DOI:10.1371/journal.pone.0167564
  16. Chabchoubi, I.B., Bouguerra, S., Ksibi, M. & Hentati O. (2021) Health risk assessment of heavy metals exposure via consumption of crops grown in phosphogypsum contaminated soils. Environ Geochem Health, 43, pp. 1953–1981. DOI:10.1007/s10653-020-00777-y
  17. Chen, Y.L., Dunbabin, V.M., Diggle, A.J., Siddique, K.H.M & Rengel, Z. (2013). Phosphorus starvation boosts carboxylate secretion in P-deficient genotypes of Lupinus angustifolius with contrasting root structure. Crop & Pasture Science, 64, pp. 588–599. DOI:10.1071/CP13012
  18. Cheng, L., Tang, X., Vance, C.P., White, P.J., Zhang, F. & Shen, J. (2014). Interactions between light intensity and phosphorus nutrition affect the phosphate-mining capacity of white lupin (Lupinus albus L.). J Exp Bot, 65 (12), pp. 2995–3003. DOI:10.1093/jxb/eru135
  19. Chernysh, Y., Yakhnenko, O., Chubur, V. & Roubik, H. (2021). Phosphogypsum Recycling: A Review of Environmental Issues, Current Trends, and Prospects. Appl. Sci., 11, 1575. DOI:10.3390/app11041575
  20. Chuan, L.M., Zheng, H.G., Zhao, J.J., Wang, A.L. & Sun, S.F. (2017). Policies, standards and managements associated with PG utilization. IOP Conf. Ser. Earth Environ. Sci., 81,pp. 1-4.
  21. Cordell, D., & White, S. (2013) Sustainable Phosphorus Measures: Strategies and Technologies for Achieving Phosphorus Security. Agronomy 3, pp. 86-116. DOI:10.3390/agronomy3010086
  22. Crusciol, C.A.C., Artigiani, A.C.C.A., Arf, O., Carmeis Filho, A.C.A., Soratto, R.P., Nascente, A.S. & Alvarez, R.C.F. (2016). Soil fertility, plant nutrition, and grain yield of upland rice affected by surface application of lime, silicate, and phosphogypsum in a tropical no-till system. Catena, 137, pp. 87–99. DOI:10.1016/j.catena.2015.09.009
  23. Delgado, A., Uceda, I., Andreu, L., Kassem, S. & Del Campbillo, C. (2002) Fertilizer Phosphorus Recovery from Gypsum-Amended, Reclaimed Calcareous Marsh Soils. Reclaimed Calcareous Marsh Soils, Arid Land Research and Management, 16:4, pp. 319-334. DOI:10.1080/15324980290000421
  24. Dhillon, J., Torres, G., Driver, E., Figueiredo, B. & Raun, W. (2017) World Phosphorus Use Efficiency in Cereal Crops. Agronomy Journal, vol. 109, issue 4, pp. 1670-1677. DOI:10.2134/agronj2016.08.0483
  25. Ding, W., Cong, W. & Lambers, H. (2021). Plant phosphorus-acquisition and –use strategies affect soil carbon cycling. Trends in Ecology & Evolution, vol. 36, no. 10, pp. 899-906. DOI:10.1016/j.tree.2021.06.005
  26. Dissanayaka, D.M.S.B., Wickramasinghe, W.M.K.R., Marambe B. & Wasaki J. (2017). Phosphorus-mobilization strategy based on carboxylate exudation in lupins (lupinus, Fabaceae): a mechanism facilitating the growth and phosphorus acquisition of neighbouring plants under phosphorus-limited conditions. Experimental Agriculture, 53(2), pp. 308-319. DOI:10.1017/S0014479716000351
  27. Egle, K., Römer, W. & Keller, H. (2003). Exudation of low molecular weight organic acids by Lupinus albus L., Lupinus angustifolius L. and Lupinus luteus L. as affected by phosphorus supply. Agronomie, 23, pp. 511–518. DOI:10.1051/agro:2003025
  28. Ekholm, P., Jaakkola, E., Kiirikki, M., Lahti, K., Lehtoranta, J., Mäkelä, V., Näykki, T., Pietola, L., Tattari, S., Valkama, P., Vesikko, L. & Väisänen S. (2011). The effect of gypsum on phosphorus losses at the catchment scale. The Finnish Environment 33, Finnish Environment Institute, Helsinki.
  29. Elloumi, N., Zouari, M., Chaari, L., Abdallah, F.B., Woodward, S. & Kallel, M. (2015). Effect of phosphogypsum on growth, physiology, and the antioxidative defense system in sunflower seedlings. Environ Sci Pollut Res, 22, pp. 14829–14840. DOI: 10.1007/s11356-015-4716-z
  30. Elrashidi, M.A., West, L.A., Seybold, C.A., Benham, E.C., Schoeneberger, P.J. & Ferguson, R. (2010). Effects of Gypsum Addition on Solubility of Nutrients in Soil Amended With Peat. Soil Science, v. 175, n. 4, pp. 162-172. DOI:10.1097/SS.0b013e3181dd51d0
  31. Elser, J.J. & Bennett, E.M. (2011). A broken biogeochemical cycle. Nature, 478, pp. 29–31. DOI:10.1038/478029a
  32. Enamorado, S., Abril, J.M., Mas, J.L., Periáñez, R., Polvillo, O., Delgado, A. & Quintero, J.M. (2009). Transfer of Cd, Pb, Ra and U from Phosphogypsum Amended Soils to Tomato Plants. Water Air Soil Pollut, 203,pp. 65–77. DOI:10.1007/s11270-009-9992-0
  33. Fotyma, M., Fotyma, E., Gosek, S., Iłowiecka, E., Pietrasz-Kęsik, G., Kęsik, K., Ostrokólski, I., Szewczyk, M., Wilkos, G. & Faber, A. (1991) Szybkie metody określania potrzeb nawozowych roślin oraz zagrożenia środowiska w wyniku nawożenia, Instrukcja wdrożeniowa 34/91, Puławy. (in Polish)
  34. Funayama-Noguchi, S., Noguchi, K. & Terashima, I. (2015). Comparison of the response to phosphorus deficiency in two lupin species, Lupinus albus and L. angustifolius, with contrasting root morphology. Plant, Cell and Environment, 38, pp. 399–410.
  35. Grabas, K., Pawełczyk, A., Stręk W., Szełęg, E. & Stręk S. (2018). Study on the Properties of Waste Apatite Phosphogypsum as a Raw Material of Prospective Applications. Waste and Biomass Valorization, 10, pp. 3143–3155. DOI:10.1007/s12649-018-0316-8
  36. Gresta, F., Wink, M., Prins, U. Abberton, M., Capraro, J., Scarafoni, A. & Hill, G. (2017). Lupins in European cropping systems, in: Legumes in cropping systems, Murphy-Bokern, D., Stoddard, F., & Watson, C. (Eds.), Wallingford: CABI Publishing, pp. 88-108. DOI:10.1079/9781780644981.0088
  37. Hentati, O., Nelson, A., Caetano, A. L., Bouguerra, S., Gonçalves, F., Römbke, J. & Pereira, R. (2015). Phosphogypsum as a soil fertilizer: Ecotoxicity of amended soil and elutriates to bacteria, invertebrates, algae and plants. Journal of Hazardous Materials, 294, pp. 80–89. DOI:10.1016/j.jhazmat.2015.03.034
  38. Hilton, J. (2006). Phosphogypsum – management and opportunities for use, in: The International Fertiliser Society Cambridge, Proceedings 587, London.
  39. Kabata-Pendias, A., Pendias, H. (2001). Trace elements in soils and plants, Third edition, CRC Press LLC, 408 p.
  40. Kassir, L.N., Darwish, T., Shaban, A., Lartiges, B. & Ouiani, N. (2012). Mobility of selected trace elements in Mediterranean red soil amended with phosphogypsum: experimental study. Environ Monit Assess, 184, pp. 4397–4412. DOI:10.1007/s10661-011-2272-7
  41. Lambers, H., Clements, J.C. & Nelson, M.N. (2013). How a phosphorus-acquisition strategy based on Carboxylate exudation powers the success and Agronomic potential of lupines (Lupinus, Fabaceae). Am. J. Bot., 100(2), pp. 263–288. DOI:10.3732/ajb.1200474
  42. Lambers, H. & Plaxton, W.C. (2015). Phosphorus: Back to the Roots, in: Phosphorus Metabolism in Plants, Annual Plant Reviews, vol. 48, Plaxton W. C., Lambers H. (Eds.). JohnWiley & Sons, pp. 3-24. DOI: 10.1002/9781118958841.ch1
  43. Manzoor, H., Bukhat, S., Rasul, S., Rehmani, M.I.A., Noreen, S., Athar, H.R. , Zafar, Z.U., Skalicky, M., Soufan, W., Brestic, M., Habib-ur-Rahman, M., Ogbaga, C.C. & Sabagh, A. (2022). Methyl Jasmonate Alleviated the Adverse Effects of Cadmium Stress in Pea (Pisum sativum L.): A Nexus of Photosystem II Activity and Dynamics of Redox Balance. Front. Plant Sci. 13, 860664. DOI:10.3389/fpls.2022.860664
  44. Monei, N., Hitch, M., Heim, J., Pourret, O.,Heilmeier, H. & Wiche O. (2022) Effect of substrate properties and phosphorus supply on facilitating the uptake of rare earth elements (REE) in mixed culture cropping systems of Hordeum vulgare, Lupinus albus and Lupinus angustifolius. Environmental Science and Pollution Research, 29, pp. 57172–57189. DOI:10.1007/s11356-022-19775-x
  45. Nayak, S., Mishra, C.S.K., Guru, B. & Rath, M. (2011). Effect of phosphogypsum amendment on soil physico-chemical properties, microbial load and enzyme activities. J. Environ. Biol., 32, pp. 613-617.
  46. Ochmian, I., Kozos, K., Jaroszewska, A. & Malinowski, R. (2021). Chemical and Enzymatic Changes of Different Soils during Their Acidification to Adapt Them to the Cultivation of Highbush Blueberry. Agronomy, vol.11(1), 44. DOI: 10.3390/agronomy11010044
  47. Ogbaga, C.C., Athar, H.-u.-R., Amir, M., Bano, H., Chater, C.C.C. & Jellason, N.P. (2020). Clarity on frequently asked questions about drought measurements in plant physiology. Scientific African, 8, e00405. DOI:10.1111/ppl.13327
  48. Ouyang, X., Ma, Zhang, R., Li, P., Gao, M., Sun, C., Weng, L., Chen, Y., Yan, S. & Li, Y. (2022). Uptake of atmospherically deposited cadmium by leaves of vegetables: Subcellular localization by NanoSIMS and potential risks. Journal of Hazardous Materials, 431: 128624. DOI:10.1016/j.jhazmat.2022.128624
  49. Pearse, S.J., Veneklaas, E.J., Cawthray, G.R., Bolland, M.D.A & Lambers, H. (2006). Carboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus status. Plant Soil, 288, pp. 127–139. DOI:10.1007/s11104-006-9099-y
  50. Piszcz U. (2013). Ocena przydatności testów do opisu stanu fosforowego gleb uprawnych, Monografie CLXVI, Wyd. UP we Wrocławiu, Wrocław. (in Polish)
  51. Pliaka, M. & Gaidajis, G. (2022) Potential uses of phosphogypsum: A review. J. Environ. Sci. Health, Part A, 57:9, pp. 746-763, DOI:10.1080/10934529.2022.2105632
  52. PN-R-04023. (1996). Chemical and agricultural analysis-determination of the content available phosphorus in mineral soil. Warszawa: Polish Standards Committee.
  53. Quintero, J.M., Enamorado, S., Mas, J.L., Abril J.M., Polvillo, O. & Delgado, A. (2014). Phosphogypsum amendments and irrigation with acidulated water affect tomato nutrition in reclaimed marsh soils from SW Spain. Span J Agric Res, 12(3), pp. 809-819. DOI:10.5424/sjar/2014123-5273
  54. Rajković, M.B., Blagojević, S.D., Jakovljević, M.D. & Todorović, M.M. (2000). The Application of Atomic Absorption Spectrophotometry (AAS) for Determining the Content of Heavy Metals in Phosphogypsum. Journal of Agricultural Sciences, vol. 45, no 2, pp. 155-164.
  55. Roberts, T.L. & Johnston, A.E. (2015). Phosphorus use efficiency and management in agriculture. Resour Conserv Recycl, vol. 105, pp. 275-281. DOI: 10.1016/j.resconrec.2015.09.013
  56. Römer, W., Dong-Kyu, K., Egle, K., Gerke, J. & Keller, H. (2000). The acquisition of cadmium by Lupinus albus L., Lupinus angustifolius L. and Lolium multiflorum. Lam. J. Plant Nutr. Soil Sci., 163, pp. 623–628. DOI:10.1002/1522-2624(200012)163:6<623::AID-JPLN623>3.3.CO;2-3
  57. Rothwell, S.A., Doody, D.G., Johnston, C., Forber K.J., Cencic O., Rechberger, H. & Withers, P.J.A (2020) Phosphorus stocks and flows in an intensive livestock dominated food system. Resources, Conservation and Recycling, vol. 163,105065. DOI:10.1016/j.resconrec.2020.105065
  58. Saadaoui, E., Ghazel, N., Ben Romdhane, C. & Massoudi, N. (2017). Phosphogypsum: Potential uses and problems – A review. Int. J. Environ. Stud., 74, pp. 558–567. DOI:10.1080/00207233.2017.1330582
  59. Shahid, S.A. & Rehman, K. (2011). Soil salinity development, classification, assessment and management in irrigated agriculture, in: Handbook of plant and crop stress Passarakli M. (Eds.), CRC Press/Taylor & Francis Group, Boca Raton, pp. 23–39.
  60. Smaling, E., Toure, M., Ridder, N.D., Sanginga, N. & Breman, H. (2006). Fertilizer Use and the Environment in Africa: Friends or Foes? Background Paper Prepared for the African Fertilizer Summit, Abuja, Nigeria.
  61. Smaoui-Jardak, M., Kriaa, W., Maalej, M., Zouari, M., Kamoun, L., Trabelsi, W., Abdallah, F.B. & Elloumi, N. (2017). Effect of the phosphogypsum amendment of saline and agricultural soils on growth, productivity and antioxidant enzyme activities of tomato (Solanum lycopersicum L.). Ecotoxicology, 26, pp. 1089-1104. DOI:10.1007/s10646-017-1836-x
  62. Syers, J.K., Johnston, A.E. & Curtin, D. (2008). Efficiency of soil and fertilizer phosphorus use. FAO Fertilizer and Plant Nutrition Bulletin, FAO. Rome.
  63. Takasu, E., Yamada, F., Shimada, N., Kumagai, N., Hirabayashi, T. & Saigusa, M. (2006). Effect of phosphogypsum application on the chemical properties of Andosols, and the growth and Ca uptake of melon seedlings. Soil Science and Plant Nutrition, 52, pp. 760–768. DOI:10.1111/j.1747-0765.2006.00093.x
  64. Tian, D., Xia, J., Zhou, N., Xu, M., Li, X., Zhang, L., Du S. & Gao H. (2022) The Utilization of Phosphogypsum as a Sustainable Phosphate-Based Fertilizer by Aspergillus niger. Agronomy, 12, 646. DOI:10.3390/agronomy12030646
  65. Trejo, N., Matus, I., Del Pozo, A., Walter, I. & Hirzel, J. (2016). Cadmium phytoextraction capacity of white lupine (Lupinus albus L.) and narrow-leafed lupine (Lupinus angustifolius L.) in Tyree contrasting agroclimatic conditions of Chile. Chilean Journal of Agricultural Research, 76(2), pp. 228-235.
  66. Verheijen, F.G.A, Zhuravel, A., Silva, F.C., Amaro, A., Ben-Hur, M. & Keizer, J.J. (2019). The influence of biochar particle size and concentration on bulk density and maximum water holding capacity of sandy vs sandy loam soil in a column experiment. Geoderma, vol. 347, pp. 194-202. DOI:10.1016/j.geoderma.2019.03.044
  67. Vyshpolsky, F., Bekbaev, U., Mukhamedjanov, Kh., Ibatullin, S., Paroda, R., Yuldashev, T., Karimov, A., Aw-Hassan, A., Noble, A. & Qadir, M. (2008). Enhancing the Productivity of High-Magnesium Soil and Water Resources. LDD, vol. 19, issue 1, pp. 45-56. DOI:10.1002/ldr.814
  68. Watanabe, F.S. & Olsen, S.R. (1965). Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. Am. Proc., 29 (6), pp. 677–678.
  69. Xu, W., Zhang, Q., Yuan, W., Xu, F., Aslam, M.M., Miao, R., Li, Y., Wang, Q., Li, X., Zhang, X., Xia, T. & Cheng F. (2020) The genome evolution and low-phosphorus adaptation in white lupin. Nature Communications, vol. 11, 1069. DOI:10.1038/s41467-020-14891-z
  70. Yakovlev, A.S., Kaniskin, M.A. & Terekhova, V.A. (2013). Ecological Evaluation of Artificial Soils Treated with Phosphogypsum. Eurasian Soil Science, vol. 46, no. 6, pp. 697–703. DOI:10.1134/S1064229313060124
  71. Yanai, M., Uwasawa, M. & Shimizu, Y. (2000). Development of a New Multinutrient Extraction Method for Macro- and Micro- Nutrients in Arable Land Soil. Soil Sci. Plant Nutr., 46 (2), pp. 299–313. DOI:10.1080/00380768.2000.10408786
Go to article

Authors and Affiliations

Kamila Stępień
1
Piotr Stępień
1
Urszula Piszcz
1
Zofia Spiak
1

  1. Wroclaw University of Environmental and Life Sciences, Department of Plant Nutrition, Poland

This page uses 'cookies'. Learn more