Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Due to the observed increase in the amount of waste in landfills, there has been an increase in the demand for products made of biomaterials and the composition of biomaterials with petroleum-derived materials. The problem of waste disposal/management also applies to waste from the casting production process with the use of disposable casting moulds made with the use of organic binders (resins), as well as residues from the process of regeneration of moulding sands. A perspective solution is to add a biodegradable component to the moulding/core sand. The authors proposed the use of polycaprolactone (PCL), a polymer from the group of aliphatic polyesters, as an additive to a casting resin commonly used in practice. As part of this study, the effect of PCL addition on the (bio) degradation of dust obtained after the process of mechanical regeneration of moulding sands with organic binders was determined. The (bio) degradation process was studied in the environment reflecting the actual environmental conditions. As part of the article, dust samples before and after the duration of the (bio) degradation process were tested for weight loss by thermogravimetry (TG) and for losses on ignition (LOI).
Go to article

Bibliography

[1] Bastian, K.C., Alleman, J.E. (1996). Environmental bioassay evaluation of foundry waste residuals. Joint Transportation Research Program Technical Report Series, Purdue University, Purdue e-Pubs.
[2] Brenner, V. (2003). Biodegradace persistentních xenobiotik. Biodegradace. VI, 2003, 45-47.
[3] Sobków, D., Barton, J., Czaja, K., Sudoł, M. & Mazoń, B. (2014). Research on the resistance of materials to environmental factors. CHEMIK. 68(4), 347–354. (in Polish).
[4] Stachurek I. (2010). Biomedical systems of polyethylene oxide biodegradable in the aquatic environment. PhD thesis, Politechnika Krakowska. (in Polish).
[5] Eastman, J. (2000). Protein-based binder update: performance put to the test. Modern Casting. 90, 32-34.
[6] Kramářová, D., Brandštetr, J., Rusín, K. & Henzlová, P. (2003). Biogenic polymeric materials as binders for foundry molds and cores. Slévárenství. 60(2-3), 71-73. (in Czech).
[7] Grabowska, B., Holtzer, M., Dańko, R., Górny, M., Bobrowski, A. & Olejnik, E. (2013). New bioco binders containing biopolymers for foundry industry. Metalurgija. 52(1), 47-50.
[8] Grabowska, B., Szucki, M., Suchy, J.Sz., Eichholz, S., Hodor, K. (2013). Thermal degradation behavior of cellulose-based material for gating systems in iron casting production. Polimery. 58(1), 39-44.
[9] Major-Gabryś, K. (2016). Environmentally Friendly Foundry Moulding and Core Sands. Katowice-Gliwice, Archives of Foundry Engineering, ISBN 978-83-63605-24-7 (in Polish)
[10] Major-Gabryś, K. (2019). Environmentally Friendly Foundry Molding and Core Sands. Journal of Materials Engineering and Performance. 28(7), 3905-3911.
[11] Holtzer, M. (2001). Management of waste and by-products in foundries. Kraków: University Scientific and Didactic Publishers, AGH, Poland. (in Polish).
[12] Skrzyński, M., Dańko, R. & Czapla, P. (2014). Regeneration of used moulding sand with furfuryl resin on a laboratory stand. Archives of Foundry Engineering. 14(spec.4), 111-114. (in Polish).
[13] Dańko, R., Łucarz, M. & Dańko, J. (2014). Mechanical and mechanical-thermal regeneration of the used core sand from the cold-box process. Archives of Foundry Engineering. 14(spec.4), 21-24. (in Polish).
[14] Rui, T., Liu, J. (2010). Study of modified furan resin binder system for large steel castings. In Proceedings of 69th World Foundry Congress, 16 - 20 October 2010. Hangzhou, China, World Foundry Organization (pp. 996 – 999).
[15] Dańko, R., Holtzer, M., Dańko, J. (2015). Characteristics of dust from mechanical reclamation of moulding sand with furan cold-setting resins – impact on environment. In Proceedings of the 2015 WFO International Forum on Moulding Materials and Casting Technologies, 25 – 28 September 2015. Changsha, China. WFO Moulding Materials Commission, Foundry Institution of Chinese Mechanical Engineering Society, Productivity Center of Foundry Industry of China (38-46).
[16] Iwamoto, A. & Tokiwa, Y. (1994). Enzymatic degradation of plastics containing polycaprolactone. Polymer Degradation and Stability. 45(2), 205-213.
[17] Eastmond, G.C. (2000). Poly(ε-caprolactone) blends. Advances in Polymer Science. 149, 59-222.
[18] Gutowska, A., Michniewicz, M., Ciechańska, D. & Szalczyńska, M. (2013). Methods of testing the biodegradability of biomass materials. CHEMIK. 67(10), 945-954. (in Polish).
[19] Major-Gabryś, K., Hosadyna-Kondracka, M., Skrzyński, M., Pastirčák, R. (2020). The quality of reclaim from moulding sand with furfuryl resin and PCL additive. The abstract paper at XXVI international conference of Polish, Czech and Slovak founders: 7-9.09.2020 r. Baranów Sandomierski, Poland.
[20] Major-Gabryś, K., Hosadyna-Kondracka, M. & Stachurek, I. (2020). Determination of mass loss in samples of post-regeneration dust from moulding sands with and without PCL subjected to biodegradation processes in a water environment. Journal of Applied Materials Engineering. 60(4), 121-129.
Go to article

Authors and Affiliations

K. Major-Gabryś
1
ORCID: ORCID
I. Stachurek
2
ORCID: ORCID
M. Hosadyna-Kondracka
2
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Mickiewicza 30, 30-059 Cracow, Poland
  2. ŁUKASIEWICZ Research Network - Foundry Research Institute, Zakopianska 73, 30-418 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper is to determine the influence of biomaterial in the binder composition on the quality of reclaim from furan no-bake sands. The biomaterial is introduced into the moulding sand in order to accelerate the biodegradation of post-regeneration dust and thus to reduce the amount of harmful waste from foundries in landfills. This addition, however, can’t deteriorate the technological properties of the moulding sand, including its ability to mechanical regeneration. Chemically bonded moulding sands are characterized by high ability to mechanical regeneration, which reduces the consumption of the raw material and costs related to their transport and storage. A side effect of the regeneration process is the formation of a large amount of post-regeneration dusts. According to the tendencies observed in recent years, moulding processes must meet high requirements connected to environmental protection including problems related to the disposal of generated wastes. A partial replacement of synthetic binding materials with biomaterials may be one of scientific research directions on the production of innovative foundry moulding and core sands. The conducted regeneration tests presented in this paper initially proved that biomaterial slightly decreases the quality of reclaim from moulding sand with its addition. However, its ability to regeneration increases with time of the process. In previous research authors tested biodegradability of the dust remaining after the regeneration process. The tests proved that moulding sand with biomaterial added at the stage of the production process is characterized by about three times better biodegradability than the same moulding sand without additive.
Go to article

Authors and Affiliations

Katarzyna Major-Gabryś
1
ORCID: ORCID
Małgorzata Hosadyna-Kondracka
2
ORCID: ORCID
Mateusz Skrzyński
1
ORCID: ORCID
Iwona Stachurek
2
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Al. Mickiewicza 30, 30-059 Cracow, Poland
  2. Łukasiewicz Research Network – Krakow Institute of Technology, Zakopianska 73, 30-418 Cracow, Poland

This page uses 'cookies'. Learn more