Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Generation of coal-based electricity is always associated with the origination of large amount of combustion waste. The presented article is a review concerning the possibilities of innovative directions of management for one of the by-products of coal combustion: fly ash. The storage of these waste products is associated with their negative impact on the environment. This is why research has been undertaken worldwide on the implementation of the concept of a circular economy. This article includes the examination of basic physical, chemical, and mineralogical properties of the most valuable components of fly ash (microspheres, magnetic fraction, and glass). It contains the examination of methods of separating these components and indicates the prospective directions of their use, e.g. as light fillers for polymers, sorbents, catalysts, composite materials, light ceramics, lightweight concretes, thermal insulation materials, biomaterials, raw material for the synthesis of zeolites or geopolymers. The paper also presents the components of fly ash, which can be treated as an alternative source of valuable elements, including critical elements. Moreover, it points to the necessity of capturing flammable substances from combustion by-products in order to obtain raw material characterised by a high degree of purity. It has been demonstrated that this way of ash management can lead to high recycling rates and bring valuable materials back to the economy. Such actions fit perfectly into global efforts for sustainable development and the circular economy.
Go to article

Authors and Affiliations

Ewa Strzałkowska
1
ORCID: ORCID

  1. Silesian University of Technology, Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The issues covered by the work are important and topical as sinkholes that develop in large numbers over shallow mining excavations pose a great threat to public safety. In Upper Silesia (Poland), the formation of sinkholes can be observed even for a period of over 100 years following the termination of mining works. An effective method of risk elimination consists of filling the voids with a binding material with strength properties similar to those of the rocks surrounding the void. The application of fly ash is very suitable for this purpose, the use of which also has an ecological aspect. The literature studies presented in the paper indicate the possibility of making mixtures with the use of fly ash that has the required strength parameters. The compressive strength of the mixtures after solidification is up to 3 MPa, or even up to 7 MPa, and in some cases, up to 15 MPa. Most of the voids at shallow depths are found in coal seams, in which the compressive strength at shallow depths amounts to approx. 5 MPa. Thus, by filling the void with such material, we can ensure conditions similar to those prevailing before the excavation was made. The paper presents a case study involving the formation of a sinkhole above a dog heading and an ex post forecast made with the use of two selected methods. These methods yielded results affirming that the development of a sinkhole in the considered conditions is certain. Then, using the said methods, the impact of the filling level of the void on the possibility of sinkhole development was analyzed. The obtained results indicated the necessity to fill the void to around 90% with the use of one of the methods and its complete filling with the use of the other method.
Go to article

Authors and Affiliations

Piotr Strzałkowski
1
ORCID: ORCID
Ewa Strzałkowska
1
ORCID: ORCID

  1. Silesian University of Technology, Faculty of Mining, Safety Engineering and Industrial Automation, Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article presents the results of the study of changes in mineral and chemical composition of artificial aggregates consisting of coal shale (a hard coal mining waste) and fluidized ashes. Such an aggregate was used for road construction. After completion of the construction works but before making the road available for public use, significant deformation of the surface in the form of irregular buckling of the asphalt layer occurred. It was excluded that this resulted from mining damage, design errors or performance mistakes, among others. A study of the materials that had been incorporated in the construction layers was undertaken in order to find the component and the mechanism responsible for the buckling of the road surface. A comparison of the mineral and chemical composition of aggregate samples collected from the embankment where the road buckled with the reference sample and samples from places without deformations showed that the bumps in the road embankment consisted of minerals that were not initially present in the aggregate. Wastes produced as a result of high temperatures (slag and power plants ashes, metallurgical wastes) are not as stable in terms of chemical and phase composition in the hypergenic environment. As a result of the processes occurring in the road embankment, anhydrite, which is the primary component of fluidized ashes, was transformed into gypsum and ettringite. As a result of contact with water CaO (present in fluidized ashes) easily changed into calcium hydroxide. As the crystallization of these minerals is expansive, it resulted in the filling of pores and, in extreme cases, in a substantial increase in the volume of the aggregate and, consequently, in the deformation of the road surface.
Go to article

Authors and Affiliations

Zdzisław Adamczyk
Marcin Grygierek
Marian Łupieżowiec
Jacek Nowak
Ewa Strzałkowska

This page uses 'cookies'. Learn more