Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Reservoirs have a very important function in providing multi-sector water requirements. In the future, reservoirs not only serve to store and available water can also be used as disaster mitigation instruments. The completeness of hydrological measurements in reservoirs can be expanded more widely for climate change mitigation. The reliability of the reservoir capacity varies greatly depending on the El-Nino character that occurs among them El-Nino is weak, moderate, strong and very strong. The El-Nino characteristic is very influential on the period of water availability, the increase of evaporation capacity and decrease of reservoir capacity. Analysis of the reliability of the reservoir volume due to El-Nino using the Weibull equation. The deficit reservoir was calculated using the concept of water balance in the reservoir that is the relationship between inflow, outflow, and change of storage at the same time. Based on the results of the analysis showed that the evaporation increase and the decrease of reservoir capacity had a different pattern that is when the evaporation capacity started to increase at the same time the reservoir capacity decreased significantly. The correlation coefficient between evaporation capacity increase and decrease of reservoir water capacity are consecutively –0.828, –0.636, and –0.777 for El- Nino weak, moderate and very strong respectively. At the reservoir capacity reliability of 50% reservoir has a significant deficit. When weak El-Nino the deficit is 2.30∙106 m3, moderate: 6.58∙106 m3, and very strong 8.85∙106 m3.

Go to article

Authors and Affiliations

Ussy Andawayanti
I Wayan Yasa
ORCID: ORCID
Mohammad Bisri
Mochamad Sholichin
Sulianto
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Under conditions of gravity flow, the performance of a distribution pipe network for drinking water supply can be measured by investment cost and the difference in real and target pressures at each node to ensure fairness of the service. Therefore, the objective function for the optimization in the design of a complex gravity flow pipe network is a multi-purpose equation system set up to minimize the above-mentioned two parameters. This article presents a new model as an alternative solution to solving the optimization equation system by combining the Newton–Raphson and genetic algorithm (GA) methods into a single unit so that the resulting model can work effectively. The Newton–Raphson method is used to solve the hydraulic equation system in pipelines and the GA is used to find the optimal pipe diameter combination in a net-work. Among application models in a complex pipe network consisting of 12 elements and 10 nodes, this model is able to show satisfactory performance. Considering variations in the value of the weighting factor in the objective function, opti-mal conditions can be achieved at the investment cost factor (ω1) = 0.75 and the relative energy equalization factor at the service node (ω2) = 0.25. With relevant GA input parameters, optimal conditions are achieved at the best fitness value of 1.016 which is equivalent to the investment cost of USD 56.67 thous. with an average relative energy deviation of 1.925 m.
Go to article

Bibliography

ABEBE A.J., SOLOMATINE D.P. 1998. Application of global optimization to the design of pipe networks. Proc. 3rd International Conference on Hydroinformatics. Copenhagen, August 1998. Balkema. Rotterdam p. 1–8.
AFSHAR M.H. 2006. Application of ant algorithm to pipe network optimization. Iranian Journal of Science & Technology. Transaction B, Engineering. Vol. 31. No. B5 p. 487–500.
AKLOG D., HOSOI Y. 2017. All-in-one model for designing optimal water distribution pipe networks. Journal of Engineering Drinking Water Engineering and Science. DOI 10.5194/dwes-10-33-2017.
ALI M.M., STOREY C. 1994. Modified controlled random search algorithms. International Journal of Computer Mathematics. Vol. 53. Iss. 3–4 p. 229–235.
BELLO A.D., WAHEED A., ALAYANDE, JOHNSON A.O., ISMAIL A, LAWAN U.F. 2015. Optimization of the designed water distribution system using MATLAB. International Journal of Hydraulic Engineering. Vol. 4(2) p. 37–44. DOI 10.5923/j.ijhe. 20150402.03.
GOLDBERG D.E. 1989. Genetic algorithms in search, optimization & machine learning. Addison-Wesley Publishing Co., Reading. ISBN 0201157675 pp. 432.
KADU M.S., GUPTA R., BHAVE P.R. 2008. Optimal design of water networks using a Modified Genetic Algorithm with reduction in search space. Journal of Water Resources Planning and Management. Vol. 134(2) p. 147–159.
KUMAR D., SUDHEER C.H., MATHUR S., ADAMOWSKI J. 2015. Multi-objective optimization of in-situ bioremediation of groundwater using a hybrid metaheuristic technique based on differential evolution, genetic algorithms and simulated annealing. Journal of Water and Land Development. No. 27 p. 29–40. DOI 10.1515/jwld-2015-0022.
MEMON K.K., NARUKLAR S.N. 2016. Review of pipe sizing optimization by Genetic Algorithm. IJIRST – International Journal for Innovative Research in Science & Technology. Vol. 3. Iss. 06 p. 138–141.
MOOSAVIAN N., JAEFARZADEH R. 2014. Hydraulic analysis of water supply networks using a modified Hardy Cross method. International Journal of Engineering, Transactions B: Applications. Vol. 27. No. 9 p. 1331–1338. DOI 10.5829/idosi. ije.2014.27.09c.02.
MTOLERA I., HAIBIN L., YE L., FENG S.B., XUE D., YI M. 2014. Optimization of tree pipe networks layout and size using Particle Swam Optimization. WSEAS Transactions on Computers. Vol. 13 p. 219–230.
PRICE W.L. 1983. Global optimization by controlled random search. Journal of Optimization Theory & Applications. Vol. 40 p. 333–348. DOI 10.1007/BF00933504.
RAJABPOUR R., TALEBBEYDOKHTI N. 2014. Simultaneous layout and pipe size optimization of pressurized irrigation networks. Basic Research Journal of Agricultural Science and Review. Vol. 3(12) p. 131–145.
SALEH C., SULIANTO 2011. Optimization diameter of pipe at fresh water network system. Journal of Academic Research International. Vol. 01. Iss. 02. No. 2 p. 103–109.
SÂRBU I. 2010. Optimization of water distribution networks. Proceeding of the Romanian Academy. Ser. A. Vol. 11. No. 4 p. 330–339.
SÂRBU I. 2011. Nodal analysis models of looped water distribution networks. ARPN Journal of Engineering and Applied Sciences. Vol. 6. No. 8 p. 115–125.
SHIVATAVA M., PRASAD V., KHARE R. 2015. Multi-objective optimization of water distribution system using particle swarm optimization. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE). Vol. 12. Iss. 6. Ver. I p. 21–28.
SOETOPO W., SUHARDJONO, ANDAWAYANTI U., SAYEKTI R.W., ISMOYO J. 2018. The comparison study for the models of reservoir release rule for irrigation. Case study: Sutami reservoir. Journal of Water and Land Development. No. 36 p. 153–160. DOI 10.2478/jwld-2018-0015.
SOLOMATINE D.P. 1998. Genetic and other global optimization algorithms – compareson and use in calibration problems. Proc. 3rd Intern. Conference on Hydroinformatics Copenhagen, August 1998. Balkema, Rotterdam p. 1021–1028.
SOMAIDA M., ELZAHAR M., SHARAAN M. 2011. A suggestion of optimization process for water pipe networks design. International Conference on Environment and BioScience IPCBEE. Vol. 21 p. 68–73.
SULIANTO 2015a. Programasi linier untuk pencarian diameter pipa optimal pada sistem jaringan pipa distribusi air bersih [Linear programming for search optimum diameter pipe in network pipe open in water supply system]. Journal of Media Teknik Sipil. Vol. 13. No. 1 p. 91–98.
SULIANTO 2015b. Pencarian diameter optimum pada sistim jaringan pipa terbuka dengan algoritma genetik. Di: Prosiding Seminar Nasional Teknik Sipil [The search optimum diameter on open network pipe system using GA. In: Proceeding National Conference Civil Engineering]. Program Studi Pasca Sarjana Teknik Sipil dan Perencanaan XI 2015 p. 191–204.
SULIANTO, BISRI M., LIMANTARA L.M., SISINGGIH D. 2018. Automatic calibration and sensitivity analysis of DISPRIN model parameters: A case study on Lesti watershed in East Java, Indonesia. Journal of Water and Land Development. No. 37 p. 141–152. DOI 10.2478/jwld-2018-0033.

Go to article

Authors and Affiliations

Sulianto
1
ORCID: ORCID
Ernawan Setiono
1
ORCID: ORCID
I Wayan Yasa
2
ORCID: ORCID

  1. University of Muhammadiyah Malang, Faculty of Engineering, Jl. Raya Tlogomas No. 246, 65114, Malang, Indonesia
  2. Mataram University, Faculty of Engineering, Mataram, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Groundwater exploitation that exceeds its recharge capacity can have a negative impact on the hydrogeological environment. Optimal exploitation means maximising pumping discharge with the least reduction in the hydraulic head. In groundwater exploitation, the position of wells, number of wells, and the discharge of groundwater pumping greatly determine changes in hydraulic head and groundwater flow patterns in a given hydrological area. This article proposes an optimisation model which is expected to be useful for finding the optimal pumping discharge value from production wells in a hydrological area. This model is a combination of solving the Laplace equation for two-dimensional groundwater flow in unconfined aquifers and the optimum variable search method based on the Shuffled Complex Evolution (SCE- UA) algorithm. Laplace equation uses the finite difference method for the central difference rule of the Crank Nicolson scheme. The system of equations has been solved using the M-FILE code from MATLAB. This article is a preliminary study which aims to examine the stability level of the optimisation equation system. Testing using a hypothetical data set shows that the model can work effectively, accurately, and consistently in solving the case of maximising pumping discharge from production wells in a hydrological area with a certain hydraulic head limitation. Consequently, the system of equations can also be applied to the case of confined aquifers.
Go to article

Authors and Affiliations

Sulianto
1
ORCID: ORCID
Sunarto Sunarto
1
ORCID: ORCID
Samin Samin
1
ORCID: ORCID
Lourina E. Orfa
1
ORCID: ORCID
Azhar Adi Darmawan
1
ORCID: ORCID

  1. University of Muhammadiyah Malang, Department of Civil Engineering, Jl. Raya Tlogomas No. 246, 65114, Malang, Indonesia

This page uses 'cookies'. Learn more