Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Passive noise reduction means are commonly used to reduce noise in the industry but, unfortunately, their effectiveness is poor in the low frequency range. By applying active structural acoustic control to the enclosure walls significant improvement of the insulating properties in this frequency range can be achieved. In this paper a model of double panel structure with ASAC is presented. The structure consists of two aluminium plates separated by an air gap. Two inertial magnetoelectric actuators and two piezoceramic MFC sensors were used for controlling the structure. A multichannel FxLMS algorithm with virtual error microphone technique is used as a control algorithm. The signal of a virtual error microphone is extrapolated basing on signals from MFC sensors. Performance of this actively controlled structure for tonal signals at selected frequencies is presented in the article. During the study, a double panel structure was mounted on one wall of sound insulating enclosure located in an acoustic chamber. During the measurements local and global reduction of noise test signal was investigated.

Go to article

Authors and Affiliations

Leszek Morzyński
Grzegorz Szczepański
Download PDF Download RIS Download Bibtex

Abstract

In this article, the authors present the geometry and measurements of the properties of an acoustic metamaterial with a structure composed of multiple concentric rings. CAD models of the structure were developed and subsequently used in numerical studies, which included the study of resonant frequencies using the Lanczos method and an analysis of sound pressure level distribution under plane wave excitation using the finite element method. Subsequently, experimental tests were carried out on models with the same geometry produced with three different materials (PLA, PET-G, and FLEX) using a fused deposition modeling 3D printing technique. These tests included: determining insertion loss for a single model based on tests using the measurement window of a reverberation chamber and determining transmission loss through tests in a semi-anechoic chamber. Sound wave resonance was obtained for frequencies ranging from 1700 to 6000 Hz. Notably, the experimental studies were carried out for the same structure for which numerical tests were conducted. The physical models of a metamaterial were manufactured using three different readily available 3D printing materials. The results of laboratory tests confirm that the created acoustic metamaterial consisting of multi-ring structures reduces noise in medium and high frequencies.
Go to article

Authors and Affiliations

Grzegorz Szczepański
1
ORCID: ORCID
Marlena Podleśna
1
ORCID: ORCID
Leszek Morzyński
1
ORCID: ORCID
Anna Włudarczyk
1

  1. Central Institute For Labour Protection – National Research Institute, Warsaw, Poland

This page uses 'cookies'. Learn more