Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The one-dimension frequency analysis based on DFT (Discrete FT) is sufficient in many cases in detecting power disturbances and evaluating power quality (PQ). To illustrate in a more comprehensive manner the character of the signal, time-frequency analyses are performed. The most common known time-frequency representations (TFR) are spectrogram (SPEC) and Gabor Transform (GT). However, the method has a relatively low time-frequency resolution. The other TFR: Discreet Dyadic Wavelet Transform (DDWT), Smoothed Pseudo Wigner-Ville Distribution (SPWVD) and new Gabor-Wigner Transform (GWT) are described in the paper. The main features of the transforms, on the basis of testing signals, are presented.

Go to article

Authors and Affiliations

Janusz Mroczka
Mirosław Szmajda
Krzysztof Górecki
Download PDF Download RIS Download Bibtex

Abstract

In the diagnosis of many disease entities directly or indirectly related to disorders of respiratory parameters and heart disease, an important support would be to estimate the temporal changes in these parameters (most often respiratory wave (RW) and respiratory rate (RR)) on the basis the results of measurements of other physiological parameters of the patient. Such a possibility exists during ECG examination. The paper presents three methods for estimating RWand RR using ECG signal processing. The three procedures developed are shown: using Savitzky–Golay filtering (S-G), the ECG-Derived Respiration method (EDR) and the Respiratory Sinus Arrhythmia Analysis method (RSA). It must be clearly stated that the proposed methods are not designed to fully diagnose the patient’s respiratory function, but they can be applied to detect some conditions that are difficult to diagnose when performing an ECG, such as sleep-disordered breathing. The obtained results of the analysis were compared with those obtained from a dedicated measurement system developed by the authors. The second part of the paper will show the results of preliminary clinical verification of the developed analysis methods, taking into account the physiological parameters of the patient.
Go to article

Authors and Affiliations

Miroslaw Szmajda
1
Mirosław Chyliński
1
Jerzy Szacha
2
Janusz Mroczka
3

  1. Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Prószkowska 76 Street, 45-758 Opole, Poland
  2. Faculty of Physical Education and Physiotherapy, Opole University of Technology, Prószkowska 76 Street, 45-758 Opole; Department of Cardiology, University Hospital in Opole, 45-401 Opole, Poland
  3. Faculty of Electronics, Photonics and Microsystems, Department of Electronic and Photonic Metrology, Wrocław University of Science and Technology, B. Prusa 53/55 Street, 50-317 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper is to compare the efficiency of various outlier correction methods for ECG signal processing in biometric applications. The main idea is to correct anomalies in various segments of ECG waveform rather than skipping a corrupted ECG heartbeat in order to achieve better statistics. Experiments were performed using a self-collected Lviv Biometric Dataset. This database contains over 1400 records for 95 unique persons. The baseline identification accuracy without any correction is around 86%. After applying the outlier correction the results were improved up to 98% for autoencoder based algorithms and up to 97.1% for sliding Euclidean window. Adding outlier correction stage in the biometric identification process results in increased processing time (up to 20%), however, it is not critical in the most use-cases.

Go to article

Authors and Affiliations

Su Jun
Miroslaw Szmajda
Volodymyr Khoma
Yuriy Khoma
Dmytro Sabodashko
Orest Kochan
Jinfei Wang

This page uses 'cookies'. Learn more