Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Geochemical studies of CO 2-rich therapeutic waters in the Sudetes have provided new data on a wide range of trace elements, going beyond standard chemical analyses of such waters. A consistent set of physicochemical data obtained using the same analytical methods was subjected to statistical analyses, including hierarchical clustering, factor analysis and nonparametric tests (Kruskal-Wallis, Tau Kendall), to reveal geochemical relationships between physicochemical and chemical parameters in the waters, and their relationships with the aquifer lithology. Distinct differences in the composition of waters found in crystalline rocks (mainly gneisses and mica schists) and sedimentary rocks were identified. The wide range of elements can be associated with the hydrolysis of silicate minerals, including alkali and alkali earth metals (Li, Na, K, Rb, Cs, Be) and (mostly) transition elements (Fe, Mn, Zn, Co, W, Mg). Carbonate equilibria are the next important factor as it determines the aggressiveness of the water towards the minerals of aquifer rocks and affects the concentrations of numerous solutes. The probable common origin of chlorides, bromides and sulphates together with Li, Na, Sr may be related to the relict saline component of deep circulating waters, a hypothesis that requires further investigations.
Go to article

Authors and Affiliations

Dariusz Dobrzyński
1
Marcin Stępień
1
Marzena Szostakiewicz-Hołownia
1
ORCID: ORCID
Włodzimierz Humnicki
1
ORCID: ORCID

  1. University of Warsaw, Faculty of Geology, Department of Hydrogeology and Geophysics, Żwirki i Wigury 93, 02-089 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Artificial water reservoirs pose impact on the natural environment. Impact of the artificial Czorsztyn Lake on groundwater and land management is assessed. The study is based on long-term observations of chemistry, groundwater levels and spring discharges during reservoir construction, filling, and 25-year-long exploitation. Land management changes caused by reservoir construction were recognized using remote sensing. Reservoir construction resulted in land management change in the study area. Built-up and forest areas gained prevalence over farmland areas. Two types of groundwater dominate: HCO3–Ca and HCO3–Ca–Mg, both before reservoir filling (68% analyses) and afterwards (95% analyses), and in control analyses from September 2020 (100% analyses). Gradual decrease in the occurrence of water types with the sulphate ion exceeding 20% mvals is documented, which points to water quality improvement trends. Moreover, changes of water saturation index values with regard to aquifer-forming mineral phases during reservoir construction and early exploitation phasei ndicate hydrochemical modifications. Decrease of groundwater level was related with transformation of the Dunajec river valley during reservoir construction and, accordingly, decrease of regional drainage base level. Groundwater level increased after reservoir filling, which points to coupled impact of the reservoir and increased precipitation recharge. Construction of the Czorsztyn Lake resulted in gradual land management transformation from farmlands into tourist-recreational areas. This change and river valley flooding by surface waters did not cause significant modifications in groundwater quantity and quality. Organization of water-sewage management related with reservoir construction resulted in noticeably improved quality trends.
Go to article

Bibliography

  1. Al-adili, A., Khasaf, S. & Ajaj, A.W.S. (2014). Hydrological Impacts of Iraqi Badush Dam on Groundwater, 4, June, pp. 90–106.
  2. Allen, P.A. (1997). Earth Surface Processes. John Wiley & Sons, Hoboken, NJ, USA.
  3. Appelo, C.A.J. & Postma, D. (2005). Geochemistry, Groundwater and Pollution. A.A. Balkema, Leiden.
  4. Baxter, R.M. (1977). Environmental Effects of Dams and Impoundments, Annual Review of Ecology and Systematics, 8, pp. 255–283.
  5. Birkenmajer, K. (1979). Geological Guidebook to the Pieniny Klippen Belt. Wydawnictwo Geologiczne, Warsaw. (in Polish)
  6. Birkenmajer, K. (2017). Geology of the Pieniny Mountains - Monographs of the Pieniny Mts. Vol. 3. Pieniński Park Narodowy, Krościenko on the Dunajec. (in Polish)
  7. Çelik, R. (2018). Impact of Dams on Groundwater Static Water Level Changes: a Case Study Kralkızı and Dicle Dam Watershed, Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi, 10, 2, pp. 119–126, DOI: 10.29137/umagd.442483.
  8. Chowaniec, J. & Witek, K. (1997). Hydrogeological Map od Poland 1: 50 000 with Description. Polish Geological Institute - National Research Institute, Warsaw. (in Polish)
  9. Clark, I. (2015). Groundwater Geochemistry and Isotopes. CRC Press, Taylor & Francis Group, Boca Raton, London, New York.
  10. Claverie, M., Vermote, E.F., Franch, B. & Masek, J.G. (2015). Evaluation of the Landsat-5 TM and Landsat-7 ETM+ surface reflectance products, Remote Sensing of Environment, 169, pp. 390–403, DOI: 10.1016/j.rse.2015.08.030.
  11. Congedo, L. (2020). Semi-Automatic Classification Plugin Documentation. (https://media.readthedocs.org/pdf/semiautomaticclassificationmanual-v4/latest/semiautomaticclassificationmanual-v4.pdf (21.10. 2020))
  12. Francis, B.A., Francis, L.K. & Cardenas, M.B. (2010). Water table dynamics and groundwater-surface water interaction during filling and draining of a large fluvial island due to dam-induced river stage fluctuations, Water Resources Research, 46, 7, pp. 1–5, DOI: 10.1029/2009WR008694.
  13. Graf, W.L. (1999). Dam nation: A geographic census of american dams and their large-scale hydrologic impacts, Water Resources Research, 35, 4, pp. 1305–1311, DOI: 10.1029/1999WR900016.
  14. Ho, M., Lall, U., Allaire, M., Pal, I., Raff, D., Wegner, D., Devineni, N. & Kwon, H.H. (2017). The future role of dams in the United States of America, Water Resources Research, pp. 982–998, DOI: 10.1002/2016WR019905.Received.
  15. Humnicki, W. (2007). Hydrogeology of the Pieniny Mountains. Wydawnictwa Uniwersytetu Warszawskiego, Warsaw. (in Polish)
  16. Humnicki, W. (2009). Geological conditions of groundwater occurrence in the Pieniny Klippen Belt (West Carpathians, Poland), Studia Geologica Polonica, 132, pp. 39–69. (in Polish)
  17. Jóźwiak, K. & Krogulec, E. (2006). Geochemical modeling as an element ofprotected area monitoring, Przeglad Geologiczny, 54, 11, pp. 987–992. (in Polish)
  18. Kulka, A., Rączkowski, W., Żytko, K., Gucik, S. & Paul, Z. (1985). Detailed Geological Map of Poland, scale 1: 50 000 - Szczawnica - Krościenko sheet. Wydawnictwa Geologiczne, Warsaw. (in Polish)
  19. Łaniewski, J. (1997). Czorsztyn, Gospodarka Wodna, 12, pp. 391–393, .
  20. Li, H., Wang, C., Zhong, C., Su, A., Xiong, C., Wang, J. & Liu, J. (2017). Mapping urban bare land automatically from Landsat imagery with a simple index, Remote Sensing, 9, 249, pp. 1–15, DOI: 10.3390/rs9030249.
  21. Loveland, T.R. & Irons, J.R. (2016). Landsat 8: The plans, the reality, and the legacy, Remote Sensing of Environment, 185, pp. 1–6, DOI: 10.1016/j.rse.2016.07.033.
  22. Małecka, D. (1981). Hydrogeology of Podhale. Wydawnictwa Geologiczne, Warsaw. (in Polish)
  23. Małecka, D., Humnicki, W., Małecki, J.J. & Łabaszewski, W. (1996). Characteristics and assessment of the current water quality in the area of the Czorsztyn Reservoir, Przegląd Geologiczny, 44, 11, pp. 1103–1110. (in Polish)
  24. Małecki, J.J. (1998). Role of aeration zone in forming chemical composition of shallow ground waters, based on cases of selected hydrogeochemical environments, Biuletyn Państwowego Instytutu Geologicznego, 381, pp. 1–219. (in Polish)
  25. Mika, A.M. (1997). Three decades of Landsat instruments, Photogrammetric Engineering and Remote Sensing, 63, 7, pp. 839–852.
  26. Parkhurst, D.L. & Appelo, C.A.J. (2013). Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. U.S. Geological Survey Techniques and Methods. (http://pubs.usgs.gov/tm/06/a43/ (02.10. 2021))
  27. PN-89/C-04638/02. (1989). Water and sewage. Ion balance of water. Method of calculating the ionic balance of water. Warsaw. (in Polish)
  28. Przybyłek, J. (2016). Predictions and identification of groundwater impact of the Jeziorsko Lake during its long-term exploitation. , Gospodarka Wodna, 9, pp. 314–323.(in Polish)
  29. Richards, J.A. (2013). Remote Sensing Digital Image Analysis. An Introduction. Springer-Verlag, Berlin, Heidelberg.
  30. Szczepańska, J. & Kmiecik, E. (1998). Statistical data quality control in groundwater monitoring. Wydawnictwa AGH, Kraków. (in Polish).
  31. U.S. Geological Survey. (2016). Landsat 8 (L8) Data Users Handbook. Sioux Falls, USA.
  32. U.S. Geological Survey. (2020)a. Landsat 8 Level 2 Science Product ( L2SP ) Guide. Sioux Falls, USA.
  33. U.S. Geological Survey. (2020)b. Landsat 4-7 Collection 2 (C2) Level 2 Science Product (L2SP) Guide. Sioux Falls, USA.
  34. Wilk-Woźniak E., Pociecha A. & Mazurkiewicz-Boroń G. (2010) Comparison of choosen physico-chemical and biologocal parameters of the Czorsztyński dam reservoir in 1998 and 2005. Monographs of the Pieniny Mts. Vol. 2. Pieniński Park Narodowy, Krościenko on the Dunajec, pp. 107-121. (in Polish)
  35. Witczak, S., Kania, J. & Kmiecik, E. (2013). Catalog of selected physical and chemical indicators of groundwater pollution and their determination methods. Inspekcja Ochrony Środowiska, Warsaw. (in Polish)
  36. Woodcock, C.E., Allen, R., Anderson, M., Belward, A., Bindschadler, R., Cohen, W., Gao, F., Goward, S.N., Helder, D., Helmer, E., Nemani, R., Oreopoulos, L., Schott, J., Thenkabail, P.S., Vermote, E.F., Vogelmann, J., Wulder, M.A. & Wynne, R. (2008). Free Access to Landsat Imagery, Science, 320, 5879, pp. 1011–1012, DOI: 10.1126/science.320.5879.1011a.
  37. Zhang, L., Yang, D., Liu, Y., Che, Y. & Qin, D. (2014). Impact of impoundment on groundwater seepage in the Three Gorges Dam in China based on CFCs and stable isotopes, Environmental Earth Sciences, 72, 11, pp. 4491–4500, DOI: 10.1007/s12665-014-3349-8.
Go to article

Authors and Affiliations

Włodzimierz Humnicki
1
ORCID: ORCID
Ewa Krogulec
1
Jerzy Małecki
1
ORCID: ORCID
Marzena Szostakiewicz-Hołownia
1
ORCID: ORCID
Anna Wojdalska
1
Daniel Zaszewski
1
ORCID: ORCID

  1. Faculty of Geology, University of Warsaw, Poland

This page uses 'cookies'. Learn more