Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper compares numerical solutions of transient two-dimensional unsaturated flow equation by using different averaging schemes for internodal conductivities. Averaging methods such as arithmetic mean, geometric mean, upstream weighting, and integrated mean are taken into account, as well as a recent approach based on steady-state approximation. The latter method proved the most flexible, producing relatively accurate solutions for both downward and upward flow cases.

Go to article

Authors and Affiliations

A. Szymkiewicz
K. Burzyński
Download PDF Download RIS Download Bibtex

Abstract

Lower Carboniferous limestone has been extracted in the “Czatkowice” open-pit hill-slope quarry in southern Poland since 1947, for the needs of metallurgical and building industries, as well as farming. We can distinguish two aquifers in the Czatkowice area: the Quaternary porous aquifer and the Carboniferous fissure-porous one. Two vertical zones representing different hydrodynamic characteristics can be indentified in the Carboniferous formations. One is a weathering zone and the other one the zone of fissures and interbedding planes. Groundwater inflows into the quarry workings have been observed at the lowest mining level (+315 m above the sea level (asl)) for over 30 years. This study concerns two hypotheses of the sources of such inflows originating either from (a) the aeration zone or from (b) the saturation zone. Inflows into the quarry combine into one stream flowing gravitationally to the doline under the pile in the western part of the quarry. This situation does not cause a dewatering need. Extending eastward mining and lowering of the exploitation level lead to increased inflows.
Go to article

Authors and Affiliations

Jacek Motyka
Kajetan d'Obyrn
Agata Kasprzak
Andrzej Szymkiewicz
Download PDF Download RIS Download Bibtex

Abstract

Accurate estimation of soil permeability is crucial in many geotechnical applications. Empirical and theoretical equations based on soil particle size distribution (PSD) offer a fast and cheap way for preliminary estimation of permeability in granular soils, however the results obtained from various formulas available in the literature often show significant discrepancies. While several comparative studies on this topic have been published, no definite conclusions can be drawn on the performance of the predictive equations in comparison with in-situ permeability measurements. Many formulas require porosity or void ratio as input parameter, which is difficult to obtain for granular soil in-situ. In this study we applied 30 predictive equations to estimate permeability of sandy soil in an outwash plain deposit. The equations were divided into 5 groups, based on their structure and the required input parameters. Empirical formulas were used to estimate the expected in-situ porosity range. The obtained permeability values were compared to the results of in-situ permeameter measurements and pumping tests. Significant differences in the results and in their sensitivity to porosity were found between the 5 groups of methods. In general, simple equations which do not include porosity were in better agreement with measurements than the other groups.
Go to article

Authors and Affiliations

Wioletta Gorczewska-Langner
1
ORCID: ORCID
Anna Gumuła-Kawecka
1
ORCID: ORCID
Beata Jaworska-Szulc
1
ORCID: ORCID
Rafael Angulo-Jaramillo
2
ORCID: ORCID
Adam Szymkiewicz
3
ORCID: ORCID

  1. Gdansk University of Technology, Faculty of Civil and Environmental Engineering, ul. Narutowicza11, 80-233 Gdansk, Poland
  2. Laboratoire LEHNA, 3, rue Maurice Audin, 69518 Vaulx-en-Velin, Franc
  3. Gdansk University of Technology, Faculty of Civil and Environmental Engineering, ul. Narutowicza 11, 80-233 Gdansk, Poland

This page uses 'cookies'. Learn more