Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 10
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The NOMAD project was a survey to examine the noise-related content of instructions supplied with machinery offered for purchase in Europe. The project collected more than 1 500 instructions from machines covering 40 broad machine-families and from 800 different manufacturing companies. These instructions were analyzed to determine compliance with the requirements of the Machinery Directive, and assess the quality of information. The general state of compliance of machinery instructions with the noise-related requirements of the Machinery Directive was found to be very poor: 80% of instructions did not meet legal requirements. Some required numerical values relating to noise emissions were often missing. Where values were given, they were often not traceable to machine operating conditions or measurement methods, and not credible either against stated conditions/methods or as warnings of likely risk in real use. As a consequence, it is considered highly likely that, in making a machinery procurement decision, employers are prevented from taking noise emissions into account, and understanding what is necessary to manage the risks from noise relating to equipment that is procured. Recommendations are made for actions aimed at bringing about a global improvement to the current situation. Targeted actions are now proposed by “ADCO Machinery Group” aimed at raising awareness of the legal requirements, responsibilities and actions required among the various groups who have parts to play in the system - machine manufacturers, machine users, occupational safety and health professionals, and standards-makers. Recommendations are also made aimed at providing, or improving, tools and resources for all these actors.
Go to article

Authors and Affiliations

Jacques Châtillon
Marian Szyszko
Download PDF Download RIS Download Bibtex

Abstract

After the establishment of the first University Faculties of Missiology (Protestant and Catholic) in Germany, there was a dynamic development of missiology in Europe. In the second half of the twentieth century several academic missiological centers were established in America, Asia, Africa, and Oceania. The missiologists of the first half of the twentieth century through their scientific work have proved that missiology is a theological and interdisciplinary science. This was achieved by emphasizing in their publications that the essence of missiology finds its foundations not in references to history and direct missionary practice, but the theology of mission, i.e., the theological justification of the Church’s missionary activity. This trend of missiological reflection was highlighted in the teaching of the Second Vatican Council and in numerous papal documents of the post-conciliar period. Teaching on the missionary nature of the Church has become the subject of scientific and interdisciplinary missiological reflection. Unfortunately, up to these days the acceptance of missiology as a theological science, is not yet fully understood and not always accepted.
Go to article

Authors and Affiliations

O. Tomasz Szyszka SVD
1

  1. Uniwersytet Kardynała Stefana Wyszyńskiego w Warszawie
Download PDF Download RIS Download Bibtex

Abstract

Jesuits arrived in the land of the New Kingdom of Grande (Colombia) at the beginning of the 17th century. They founded colleges in all most important towns and began the mis-sionary service among Indians, according to the scheme of so-called ‘doctrinas’, i.e. villages inhabited by autochthons. During the years 1605-1660 they worked in a few doctrines on Altiplano in the surroundings of Bogota and Tunja and on eastern slopes of the Andes. Their service was usually very effective and carried out according to the established methodology of the missionary work. They were appealing to the following rules: systematic and regular religious education, knowledge of the local languages by missionaries, development of the educational system including study of the singing and the music, practising solemn liturgy based on solid and well equipped churches. The past experience of the work in ‘doctrinas’ was used in the second half of the 17th century during the establishment of Jesuits’ reductions in Casanare, Meta and Orinoko.

Go to article

Authors and Affiliations

O. Tomasz Szyszka SVD
Download PDF Download RIS Download Bibtex

Abstract

This paper presents material and technological studies on lab-on-chip (LOC) devices as a first step towards biocompatible and reliable research on microscopic fungi and soil organisms on a microscale. This approach is intended to respond to the growing need for environmental control and protection, by means of modern, miniaturized, portable and dependable microfluidics instrumentation. The authors have presented herein long-term, successful cultivation of different fungi representatives (with emphasis put on Cladosporium macrocarpum) in specially fabricated all-glass LOCs. Notable differences were noted in the development of these creatures on polymer, polydimethylosiloxane (PDMS) cultivation substrates, revealing the uncommon morphological character of the fungi mycelium. The utility of all-glass LOCs was verified for other fungi representatives as well –  Fusarium culmorum and Pencilium expansum, showing technical correspondence and biocompatibility of the devices. On that basis, other future applications of the solution are possible, covering, e.g. investigation of additional, environmentally relevant fungi species. Further development of the LOC instrumentation is also taken into consideration, which could be used for cultivation of other soil organisms and study of their mutual relationships within the integrated microfluidic device.
Go to article

Bibliography

  1.  C. Wagg, et al., “Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning”, Nat. Commun. 10, 4841 (2019), doi: 10.1038/s41467-019-12798-y.
  2.  M.J. Roossinck, “Evolutionary and ecological links between plant and fungal viruses”, New Phytol. 221(1), 86‒92 (2019), doi: 10.1111/ nph.15364, 2019.
  3.  H. Grossart, et al., “Fungi in aquatic ecosystems”, Nat. Rev. Microbiol. 17, 339–354 (2019), doi: 10.1038/s41579-019-0175-8.
  4.  M. Rai and G. Agarkar, “Plant–fungal interactions: What triggers the fungi to switch among lifestyles?”, Crit. Rev. Microbiol. 42(3), 428‒38 (2016), doi: 10.3109/1040841X.2014.958052.
  5.  A. Frew, J.R. Powell, G. Glauser, A.E. Bennett, and S.N. Johnson, “Mycorrhizal fungi enhance nutrient uptake but disarm defences in plant roots, promoting plant-parasitic nematode populations”, Soil Biol. Biochem. 126, 123‒132 (2018), doi: 10.1016/j.soilbio.2018.08.019.
  6.  M. Dicke, A. Cusumano, and E.H. Poelman, “Microbial Symbionts of Parasitoids”, Annu. Rev. Entomol. 65, 171‒190 (2020).
  7.  B. Kendrick, The fifth kingdom. An Introduction to mycology. Hackett Publishing Company, Inc., Indianapolis, USA, 2017.
  8.  T.A. Richards, G. Leonard, and J.G. Wideman. “What Defines the “Kingdom” Fungi?” in The fungal Kingdom, Washington, DC: ASM Press, American Society for Microbiology, Wiley Online Library, 2018.
  9.  T.S. Kaminski, O. Scheler, and P. Garstecki, “Droplet microfluidics for microbiology: techniques, applications and challenges”, Lab Chip 16, 2168‒2187 (2016).
  10.  A. Burmeister and A. Grünberger, “Microfluidic cultivation and analysis tools for interaction studies of microbial co-cultures”, Curr. Opin. Biotechnol. 62, 106‒115 (2020).
  11.  C.E. Stanley and M.G.A. van der Heijden, “Microbiome-on-a-Chip: New Frontiers in Plant–Microbiota Research”, Trends Microbiol. 25(8), 610‒613, 2017.
  12.  S.R. Lockery, et al., “Artificial Dirt: Microfluidic Substrates for Nematode Neurobiology and Behavior”, J. Neurophysiol 99(6), 3136‒3143, 2008.
  13.  H. Massalha, E. Korenblum, S. Malitsky, O.H. Shapiro, and A. Aharoni, “Live imaging of root–bacteria interactions in a microfluidics setup”, PNAS 114(17), 4549‒4554 (2017).
  14.  C.S. Effenhauser, A. Paulus, A. Manz, and H.M. Widmer, “High-Speed Separation of Antisense Oligonucleotides on a Micromachined Capillary Electrophoresis Device”, Anal. Chem. 66, 1994(18), 2949–2953 (1994).
  15.  L.J. Golonka, “Technology and applications of Low Temperature Cofired Ceramic (LTCC) based sensors and microsystems”, Bull. Pol. Ac.: Tech. 54(2), 221‒231 (2006).
  16.  M. Boyd-Moss, S. Baratchi, M. Di Venere, and K. Khoshmanesh, “Self-contained microfluidic systems: A review”, Lab Chip 16(17), 3177‒3192 (2016).
  17.  G.M. Whitesides, “The origins and the future of microfluidics”, Nature 442, 368–373 (2006).
  18.  B. Zhang, M. Kim, T. Thorsen, and Z. Wang, “A self-contained microfluidic cell culture system”, Biomed. Microdevices 11(6), 1233‒1237 (2009).
  19.  S. Ye and I.N.M. Day, Microarrays & microplates: applications in biomedical sciences, 1st Edition, Garland Science, New York, USA, 2002.
  20.  R.J. Courcol, H. Deleersnyder, M. Roussel-Delvallez, and G.R. Martin, “Automated reading of a microtitre plate: preliminary evaluation in antimicrobial susceptibility tests and Enterobacteriaceae identification”, J. Clin. Pathol. 36(3), 341–344 (1983).
  21.  J.H. Platt, A.B. Shore, A.M. Smithyman, and G.L. Kampfner, “A computerised ELISA system for the determination of total and antigen- specific immunoglobulins in serum and secretions”, J. Immunoassay Immunochem. 2, 59‒74 (2006).
  22.  L. Maresová and H. Sychrova, “Applications of a microplate reader in yeast physiology research”, BioTechniques 43(5), 667‒672, 2007.
  23.  M. Frąc, A. Gryta, K. Oszust and N. Kotowicz, “Fast and accurate microplate method (Biolog MT2) for detection of Fusarium fungicides resistance/sensitivity”, Front. Microbiol. 7, 489 (2016).
  24.  C.E. Stanley, G. Grossmann, X. Casadevall i Solvas, and A.J. deMello, “Soil-on-a-Chip: microfluidic platforms for environmental organismal studies”, Lab Chip 16 (2), 228‒241 (2016).
  25.  A. Sanati Nezhad, “Microfluidic platforms for plant cells studies”, Lab Chip 14(17), 3262‒3274 (2014).
  26.  J.C. Jokerst and J.M. Emory, C.S. Henry, “Advances in microf luidics for environmental analysis”, Analyst 137(1), 24‒34 (2012).
  27.  D.W. Inglis, N. Herman, and G. Vesey, “Highly accurate deterministic lateral displacement device and its application to purification of fungal spores”, Biomicrofluidics 24(2), 024109 (2010).
  28.  Z. Palková, L. Váchová, M. Valer, and T. Preckel, “Single-cell analysis of yeast, mammalian cells, and fungal spores with a microfluidic pressure-driven chip-based system”, Cytometry A 59, 246‒253 (2004).
  29.  M. Held, C. Edwards, and D.V. Nicolau, “Examining the behaviour of fungal cells in microconfined mazelike structures”, in Proc. SPIE 6859, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues VI, 2008.
  30.  M. Held, O. Kašpar, C. Edwards, and D.V. Nicolau, “Intracellular mechanisms of fungal space searching in microenvironments”, PNAS 116, 13543‒13552 (2019).
  31.  E. Berthier, E.W. Young, and D. Beebe, “Engineers are from PDMS-land, Biologists are from Polystyrenia”, Lab Chip 12(7), 1224‒1237 (2012).
  32.  D. Stadnik, M. Chudy, Z. Brzózka, and A. Dybko, “Spectrophotometric analysis using poly (dimethylsiloxane) microfluidic detectors”, Bull. Pol. Ac.: Tech. 53(2), 163‒165 (2005).
  33.  X. Che, J. Boldrey, X. Zhong, S. Unnikandam-Veettil, I. Schneider, D. Jiles, and L. Que, “On-Chip Studies of Magnetic Stimulation Effect on Single Neural Cell Viability and Proliferation on Glass and Nanoporous Surfaces”, ACS Appl. Mater. Interfaces 10 (34), 28269‒28278 (2018).
  34.  C. Iliescu, F. Tay, and J. Miao, “Strategies in deep wet etching of Pyrex glass”, Sens. Actuator A Phys. 133, 395‒400 (2007).
  35.  R. Ma, Q. Chen, Y. Fan, Q. Wang, S. Chen, X. Liu, L. Cai, and B. Yao, “Six new soil–inhabiting Cladosporium species from plateaus in China”, Mycologia 109(2), 244‒260 (2017).
  36.  I. Ghiaie Asl, M. Motamedi, G.R. Shokuhi, N. Jalalizand, A. Farhang, and H. Mirhendi, “Molecular characterization of environmental Cladosporium species isolated from Iran.” Curr. Med. Mycol 3(1), 1–5 (2017).
  37.  T. Watanabe, Pictorial Atlas of Soil and Seed Fungi: Morphologies of Cultured Fungi and Key to Species, CRC Press, Washington, USA (2011).
  38.  K.H. Domsch, W. Gams, and T.H. Anderson. Compendium of Soil Fungi, T: 1, Academic Press, London, UK, 1980.
  39.  J.C. Gilman, A manual of soil fungi, Ed. 2, Iowa State College Press, Ames, USA, 1957.
  40.  W. Pusz, K. Patejuk, and A. Kaczmarek, “Fungi colonizing of small balsam seeds (Impatiens parviflora DC.) seeds in Wigry National Park”, Prog. Plant Prot. 60, 33‒40 (2020).
  41.  B. Jacewski, J. Urbaniak, P. Kwiatkowski, and W. Pusz, “Microfungal diversity of Juncus trifidus L. and Salix herbacea L. at isolated locations in the Sudetes and Carpathian Mountains”, Acta Mycol. 54(1), 1118 (2019).
  42.  E. Levetin and K. Dorseys, “Contribution to leaf surface fungi to the air spora.” Aerobiologia 22, 3‒12 (2006).
  43.  S.N. Stohr and J. Dighton, “Effects of species diversity on establishment and coexistence: A phylloplane fungal community model system”, Microb. Ecol. 48, 431‒438 (2004).
  44.  E.M. El-Morsy, “Fungi isolated from the endorhizosphere of halophytic plants from the Red Sea Coast of Egypt”, Fungal Divers. 5, 43‒54 (2000).
  45.  K. Bensch, U. Braun, J.Z. Groenewald, and P.W. Crous, “The genus Cladosporium”, Stud. Mycol. 72, 1‒401 (2012).
  46.  M.B. Ellis, Dematiaceous Hyphomycetes, Commonwealth Mycological Institute, Kew, Surrey, UK, 1971.
  47.  R. Ogórek, A. Lejman, W. Pusz, A. Miłuch, and P. Miodyńska, “Characteristics and taxonomy of Cladosporium fungi”, Med. Mycol. J. 19(2), 80‒85 (2012).
  48.  S. Sharma, R.C. Sharma, and R. Malhotra, “Effect of the Saprophytic Fungi Alternaria alternata and Cladosporium oxysporum on Germination, Parasitism and Viability of Melampsora ciliata Urediniospores”, J. Plant. Dis. Prot. 109(3), 291‒300 (2002).
  49.  W. Pusz, R. Weber, A. Dancewicz, and W. Kita, “Analysis of selected fungi variation and its dependence on season and mountain range in southern Poland – key factors in drawing up trial guidelines for aeromycological monitoring”, Environ. Monit. Assess. 189(10), 526 (2017).
  50.  W. Pusz, W. Kita, A. Dancewicz, and R. Weber, “Airborne fungal spores of subalpine zone of the Karkonosze and Izerskie Mountains (Poland)”, J. Mt. Sci. 10(10), 940–952 (2013).
  51.  W. Pusz, M. Król, and T. Zwijacz-Kozica, “Airborne fungi as indicators of ecosystem disturbance: an example from selected Tatra Mountains caves (Poland)”, Aerobiologia 34, 111‒118 (2018).
  52.  E. Porca, V. Jurado, P.M. Martin-Sanchez, B. Hermosin, F. Bastian, C. Alabouvette, and C. Saiz-Jimenez, “Aerobiology: An ecological indicator for early detection and control of fungal outbreaks in caves”, Ecol. Indic. 11(6), 1594‒1598 (2011).
  53.  P. Gutarowska, “Moulds in biodeterioration of technical materials”, Folia Biologica et Oecologica 10, 27‒39 (2014).
  54.  B. Zyska and Z. Żakowska. Mikrobiologia materiałów, Politechnika Łódzka, Łódź, 2005.
  55.  T.J. Berryman. “Fuel Quality and demand – an overview” in Microbiology of fuels, Ed. R.N. Smith, Institute of Petroleum, London, UK, 1987.
  56.  K. Schubert, J.Z. Groenewald, U. Braun, J. Dijksterhuis, M. Starink, C.F. Hill, P. Zalar, G.S. de Hoog, and P.W. Crous, “Biodiversity in the Cladosporium herbarum complex (Davidiellaceae, Capnodiales), with standardisation of methods for Cladosporium taxonomy and diagnostics”, Stud. Mycol. 58, 105‒156 (2007).
  57.  J. Israel Martínez-López, M. Mojica, C.A. Rodríguez, and H.R. Siller, “Xurography as a Rapid Fabrication Alternative for Point-of-Care Devices: Assessment of Passive Micromixers”, Sensors (Basel) 16(5), 705 (2016).
  58.  D. Witkowski, W. Kubicki, J.A. Dziuban, D. Jašíková, and A. Karczemska, “Micro-particle image velocimetry for imaging flows in passive microfluidic mixers”, Bull. Pol. Ac.: Tech. 25(3), 441–450 (2018).
  59.  A. Lamberti, S.L. Marasso, and M. Cocuzza, “PDMS membranes with tunable gas permeability for microfluidic applications”, RSC Adv. 4, 61415–61419 (2014).
  60.  K. Kamei, Y. Mashimo, and Y. Koyama, “3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients”, Biomed. Microdev. 17(2), 36 (2015).
  61.  P. Thurgood, S. Baratchi, C. Szydzik, A. Mitchella, and K. Khoshmanesh, “Porous PDMS structures for the storage and release of aqueous solutions into fluidic environments”, Lab Chip 17, 2517‒2527 (2017).
  62.  A. Podwin, R. Walczak, and J.A. Dziuban, “A 3D printed membrane-based gas microflow regulator for on-chip cell culture”, Appl. Sci. 8(4), 579 (2018).
  63.  A. Podwin and J.A. Dziuban, “Modular 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms”, J. Micromech. Microeng. 27(10), 104004 (2017).
  64.  A. Podwin, W. Kubicki, K. Adamski, R. Walczak, and J.A. Dziuban, “A step towards on-chip biochemical energy cascade of microorganisms: Carbon dioxide generation induced by ethanol fermentation in 3D printed modular lab-on-a-chip”, J. Phys.: Conf. Ser. 773(1), 012052 (2016).
  65.  K. Ozasa, J. Lee, S. Song, M. Hara, and M. Maeda, “Gas/liquid sensing via chemotaxis of euglena cells confined in an isolated micro- aquarium”, Lab Chip 13, 4033‒4039 (2013).
  66.  F.J.H. Hol and C. Dekker, “Zooming in to see the bigger picture: Microfluidic and nanofabrication tools to study bacteria”, Science 346 (6208), 1251821 (2014).
  67.  K. Nagy, Á. Ábrahám, J.E. Keymer, and P. Galajda, “Application of Microfluidics in Experimental Ecology: The Importance of Being Spatial”, Front. Microbiol. 9, 496 (2018)
  68.  A. Podwin, W. Kubicki, and J.A. Dziuban, “Study of the behavior of Euglena viridis, Euglena gracilis and Lepadella patella cultured in all-glass microaquarium”, Biomed. Microdev. 19(3), 63 (2017).
  69.  R. Walczak, P. Śniadek, J.A. Dziuban, J. Kluger, and A. Chełmońska-Soyta, “Supravital fluorometric apoptosis detection in a single mouse embryo using lab-on-a-chip”, Lab Chip 11, 3263‒3268 (2011).
  70.  A. Podwin, D. Lizanets, D. Przystupski, W. Kubicki, P. Śniadek, J. Kulbacka, A. Wymysłowski, R. Walczak, and J.A. Dziuban, “Lab-on- Chip Platform for Culturing and Dynamic Evaluation of Cells Development”, Micromachines 11(2), 196 (2020).
  71.  W. Wei, et al., “A numerical model for air concentration distribution in self-aerated open channel flows”, J. Hydrodynam. B. 27(3), 394‒402 (2015).
  72.  S. Agaoglu, et al., “The effect of pre-polymer/cross-linker storage on the elasticity and reliability of PDMS microfluidic devices”, Microfluid. Nanofluidics 21, 117 (2017).
Go to article

Authors and Affiliations

Agnieszka Podwin
1
Tymon Janisz
1
Katarzyna Patejuk
2
Piotr Szyszka
1
Rafał Walczak
1
Jan Dziuban
1

  1. Wrocław University of Science and Technology, Faculty of Microsystem Electronics and Photonics, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland
  2. Wrocław University of Environmental and Life Sciences, Department of Plant Protection, Grunwaldzki Sq. 24a, 50-363 Wroclaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The work presents doping characteristics and properties of high Si−doped InGaAs epilayers lattice−matched to InP grown by low pressure metal−organic vapour phase epitaxy. Silane and disilane were used as dopant sources. The main task of investigations was to obtain heavily doped InGaAs epilayers suitable for usage as plasmon−confinement layers in the construction of mid−infrared InAlAs/InGaAs/InP quantum−cascade lasers (QCLs). It requires the doping concentration of 1×1019 cm–3 and 1×1020 cm–3 for lasers working at 9 μm and 5 μm, respectively. The electron concentration increases linearly with the ratio of gas−phase molar fraction of the dopant to III group sources (IV/III). The highest electron concentrations suitable for InGaAs plasmon−contact layers of QCL was achieved only for disilane. We also observed a slight influence of the ratio of gas−phase molar fraction of V to III group sources (V/III) on the doping efficiency. Structural measurements using high−resolution X−ray diffraction revealed a distinct influence of the doping concentration on InGaAs composition what caused a lattice mismatch in the range of –240 ÷ –780 ppm for the samples doped by silane and disilane. It has to be taken into account during the growth of InGaAs contact layers to avoid internal stresses in QCL epitaxial structures.

Go to article

Authors and Affiliations

B. Ściana
M. Badura
W. Dawidowski
K. Bielak
D. Radziewicz
D. Pucicki
A. Szyszka
K. Żelazna
M. Tłaczała

This page uses 'cookies'. Learn more