Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this work studies ofM OVPE growth of InAlGaAs/AlGaAs/GaAs heterostructures are presented. The HRXRD and SIMS measurements indicate the high structural and optical properties as well as high uniformity oft hickness and composition ofI nAlGaAs quantum wells. This work is the .rst step towards elaboration oft he technology oft he strained InAlGaAs/GaAs heterostructures for advanced optoelectronic devices working in the visible part oft he spectrum. The investigations ofSi (n-type), Zn (p-type) .-doped GaAs epilayers and centre Si-.-doped InxGa1-xAs single quantum well (SQW) are presented. The .-doping layer was formed by SiH4 or DEZn introduction during the growth interruption. The electrical and optical properties oft he obtained structures were examined using C-V measurement, EC-V electrochemical pro.ler, Raman spectroscopy (RS), photore.ectance (PR) and photocurrent (PC) spectroscopies. Technology oft hick GaN layers grown on sapphire by HVPE is very promising as a part off reestanding GaN substrates manufacturing. Further works will be focused on the optimisation of growth, separating layers from substrates and surface polishing. The in.uence oft he growth parameters on the properties of( Ga, Al)N/Al2O3 and Mg dopant incorporation was studied.

Go to article

Authors and Affiliations

B. Boratyński
R. Korbutowicz
B. Paszkiewicz
R. Paszkiewicz
D. Pucicki
D. Radziewicz
B. Ściana
M. Tłaczała
Download PDF Download RIS Download Bibtex

Abstract

The work presents doping characteristics and properties of high Si−doped InGaAs epilayers lattice−matched to InP grown by low pressure metal−organic vapour phase epitaxy. Silane and disilane were used as dopant sources. The main task of investigations was to obtain heavily doped InGaAs epilayers suitable for usage as plasmon−confinement layers in the construction of mid−infrared InAlAs/InGaAs/InP quantum−cascade lasers (QCLs). It requires the doping concentration of 1×1019 cm–3 and 1×1020 cm–3 for lasers working at 9 μm and 5 μm, respectively. The electron concentration increases linearly with the ratio of gas−phase molar fraction of the dopant to III group sources (IV/III). The highest electron concentrations suitable for InGaAs plasmon−contact layers of QCL was achieved only for disilane. We also observed a slight influence of the ratio of gas−phase molar fraction of V to III group sources (V/III) on the doping efficiency. Structural measurements using high−resolution X−ray diffraction revealed a distinct influence of the doping concentration on InGaAs composition what caused a lattice mismatch in the range of –240 ÷ –780 ppm for the samples doped by silane and disilane. It has to be taken into account during the growth of InGaAs contact layers to avoid internal stresses in QCL epitaxial structures.

Go to article

Authors and Affiliations

B. Ściana
M. Badura
W. Dawidowski
K. Bielak
D. Radziewicz
D. Pucicki
A. Szyszka
K. Żelazna
M. Tłaczała

This page uses 'cookies'. Learn more