Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 18
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The coal exploitation in the Upper Silesia region (along the Vistula River) triggers the strata seismic

activity, characterized by very high energy, which can create mining damage of the surface objects, without

any noticeable damages in the underground mining structures. It is assumed that the appearance of the

high energy seismic events is the result of faults’ activation in the vicinity of the mining excavation. This

paper presents the analysis of a case study of one coal mine, where during exploitation of the longwall

panel no. 729, the high energy seismic events occurred in the faulty neighborhood. The authors had analyzed

the cause of the presented seismic events, described the methods of energy decreasing and applied

methods of prevention in the selected mining region. The analysis concluded that the cause of the high

energy seismic events, during the exploitation of the longwall panel no. 729 was the rapid displacements

on the fault surface. The fault’s movements arose in the overburden, about 250 m above the excavated

longwall panel, and they were strictly connected to the cracking of the thick sandstone layer.

Go to article

Authors and Affiliations

Krzysztof Tajduś
Antoni Tajduś
Marek Cała
Download PDF Download RIS Download Bibtex

Abstract

The article describes the behaviour of the flysch rock massif (Carpathian flysch) during the drilling of three tunnels in the preliminary lining. These tunnels were excavated in: “Naprawa”, “Laliki”, and “Świnna Poręba”. The distance between these tunnels in a straight line was 50 km to 90 km. The results of the displacement of the contours of these tunnels and their convergence were analysed in detail. These values were compared with the indices used to assess the behaviour of the rock mass in the tunnel environment (Zasławski index and Hoek index) and the adopted limit values of displacements and deformations. On this basis, a critical analysis of the selection of initial supports in the completed tunnels was made, showing errors at the design stage.
Go to article

Authors and Affiliations

Antoni Tajduś
1
ORCID: ORCID
Krzysztof Tajduś
2
ORCID: ORCID

  1. Faculty of Civil Engineering and Resource Management, AGH University of Science and Technology, Mickiewicza 30 av., 30-059 Cracow, Poland
  2. Strata Mechanics Research Institute, Polish Academy of Science, 27 Reymonta Str., 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of analyses concerning a new approach to approximating trajectory of mining-induced horizontal displacements. Analyses aimed at finding the most effective method of fitting data to the trajectory of mining-induced horizontal displacements. Two variants were made. In the first, the direct least square fitting (DLSF) method was applied based on the minimization of the objective function defined in the form of an algebraic distance. In the second, the effectiveness of differential-free optimization methods (DFO) was verified. As part of this study, the following methods were tested: genetic algorithms (GA), differential evolution (DE) and particle swarm optimization (PSO). The data for the analysis were measurements of on the ground surface caused by the mining progressive work at face no. 698 of the German Prospel-Haniel mine. The results obtained were compared in terms of the fitting quality, the stability of the results and the time needed to carry out the calculations. Finally, it was found that the direct least square fitting (DLSF) approach is the most effective for the analyzed registration data base. In the authors’ opinion, this is dictated by the angular range in which the measurements within a given measuring point oscillated.
Go to article

Bibliography

  1.  T. Chmielewski and Z. Zembaty, Podstawy dynamiki budowli, Warsaw: Arkady, 2006 [in Polish].
  2.  J. Rusek, “Influence of the Seismic Intensity of the Area on the Assessment of Dynamic Resistance of Bridge Structures”, in IOP Conf. Ser.: Mater. Sci. Eng. 2017, pp. 245‒252, doi: 10.1088/1757-899X/245/3/032019.
  3.  J. Rusek and W. Kocot, “Proposed Assessment of Dynamic Resistance of the Existing Industrial Portal Frame Building Structures to the Impact of Mining Tremors” in IOP Conf. Ser.: Mater. Sci. Eng. 2017, pp.162‒245, doi: 10.1088/1757-899X/245/3/032020.
  4.  J. Rusek, “A proposal for an assessment method of the dynamic resistance of concrete slab viaducts subjected to impact loads caused by mining tremors”, in JCEEA. 64(1), 469‒486 (2018), doi: 10.7862/rb.2017.43.
  5.  K. Tajduś, “Analysis of Horizontal Displacements Measured over the Mining Operations in Longwall No. 537 at the Girondelle 5 Seam of the Bw Friedrich Heinrich-Rheinland Coal Mine”, Arch. Min. Sci. 61(1), 157‒168 (2016), doi: 10.1515/amsc-2016-0012.
  6.  K. Tajdus, “The nature of mining-induced horizontal displacement of surface on the example of several coal mines”. Arch. Min. Sci. 59(4), 971‒986 (2014), doi: 10.2478/amsc-2014-0067.
  7.  K. Tajduś “Analysis of horizontal displacement distribution caused by single advancing longwall panel excavation”. J. Rock Mech. Geotech. Eng. 7(4), 395‒403 (2015), doi: 10.1016/j.jrmge.2015.03.012.
  8.  Deutsche Montan Technologie GmbH (DMT). BW Prosper Haniel measurements point – Schwarze Heide, 2001 (not published) [in German].
  9.  K. Tajduś, R. Misa, and A. Sroka, “Analysis of the surface horizontal displacement changes due to longwall panel advance”, Int. J. Rock Mech. Min. Sci. 104, 119‒125 (2018), doi: 10.1016/j.ijrmms.2018.02.005.
  10.  Z.L. Szpak, W. Chojnacki, and A. van den Hengel, “Guaranteed Ellipse Fitting with a Confidence Region and an Uncertainty Measure for Centre, Axes, and Orientation”, J. Math. Imaging Vision. 52(2), 173‒199 (2015), doi: 10.1007/s10851-014-0536-x.
  11.  M.A. Kashiha, C. Bahr, S. Ott, C.P.H. Moons, T.A. Niewold, F.O. Ödberg, and D. Berckmans, “Automatic identification of marked pigs in a pen using image pattern recognition”. Comput. Electron. Agric. 93, 111‒120 (2013), doi: 10.1007/978-3-642-38628-2_24.
  12.  L. Li, Y. Wang, X. Liu, Z. Tang, and Z. He, “A fast and robust ellipse detector based on top-down least-square fitting”, in BMVC, 2015, doi: 10.5244/c.29.156.
  13.  A. Xu, Z. Wang, D. Kong, Z. Fu, and Q. Lin, “A new ellipse fitting method of the minimum differential-mode noise in the atom interference gravimeter”, Chin. Phys. B – IOPscience. 27(7), 070203 (2018), doi: 10.1088/1674-1056/27/7/070203.
  14.  K. Kanatani, Y. Sugaya, and Y. Kanazawa, “Ellipse Fitting” in: Guide to 3D Vision Computation. Advances in Computer Vision and Pattern Recognition, pp. 11‒32, Springer, Cham, 2016, doi: 10.1007/978-3-319-48493-8_2.
  15.  R. Halır and J. Flusser, “Numerically stable direct least squares fitting of ellipses” in Proc. 6th International Conference in Central Europe on Computer Graphics and Visualization, vol. 98, pp. 125‒132, WSCG, Citeseer.
  16.  A. Ray and D.C. Srivastava, “Non-linear least squares ellipse fitting using the genetic algorithm with applications to strain analysis”. J. Struct. Geol. 30(12), 1593‒1602 (2008), doi: 10.1016/j.jsg.2008.09.003.
  17.  R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization. An overview”, Swarm Intell. 1(1), 33‒57, (2007), doi: 10.1007/s11721- 007-0002-0.
  18.  F. Ye, “Particle swarm optimization-based automatic parameter selection for deep neural networks and its applications in large-scale and high- dimensional data”, PLos one. 12(12), e0188746 2017, doi: 10.1371/journal.pone.0188746.
  19.  A.J. Mantau, A. Bowolaksono, B. Wiweko, and W. Jatmiko, “Detecting ellipses in embryo images using arc detection method with particle swarm for Blastomere-quality measurement system”, JACIII. 20(7), 1170‒1180 (2016), doi: 10.20965/jaciii.2016.p1170.
  20.  M. Szczepanik and T. Burczyński, “Swarm optimization of stiffeners locations in 2-D structures”, Bull. Pol. Ac.: Tech. 60(2), 241‒246 (2012), doi: 10.2478/v10175-012-0032-7.
  21.  J. Lampinen and R. Storn, Differential evolution. New optimization techniques in engineering, pp. 123–66, Springer, 2004.
  22.  L.M. Rios and N.V. Sahinidis, “Derivative-free optimization: A review of algorithms and comparison of software implementations”. J. Global Optim. Springer. 56(3), 1247‒1293 (2013), doi: 10.1007/s10898-012-9951-y.
  23.  J. Rusek, “Application of support vector machine in the analysis of the technical state of development in the LGOM mining area”, Maint. Reliab. vol.19, 54‒61, 2017, doi: 10.17531/ein.2017.1.8.
  24.  J. Rusek, “Creating a model of technical wear of building in mining area, with utilization of regressive SVM approach”. Arch. Min. Sci. 54(3), 455‒466, (2009).
  25.  D. Rainville, F.-A. Fortin, M.-A. Gardner, M. Parizeau, and C. Gagné, “Deap: A python framework for evolutionary algorithms” in GECCO ‘12, pp. 85–92, 2012.
  26.  F.A. Fortin, F.M.D. Rainville, M.A. Gardner, M. Parizeau, and C. Gagné, “DEAP: Evolutionary algorithms made easy”, J. Mach. Learn. Res. 13(1), 2171‒2175 (2012).
  27.  M.M. McKerns, P. Hung, and M.A.G. Aivazis, “Mystic: a simple model-independent inversion framework”, 2009, [Online] Available: http:// dev.danse.us/trac/mystic.
  28.  M.M. McKerns, L. Strand, T. Sullivan, A. Fang, and M.A.G. Aivazis. „Building a framework for predictive science” arXiv preprint arXiv:1202.1056, 2012.
  29.  B. Hammel and N. Sullivan-Molina, “Bdhammel/least-squares-ellipse-fitting: Initial release (Version v1.0)”, Zenodo, doi: 10.5281/ zenodo.2578663.
  30.  A.W. Fitzgibbon, M. Pilu, and R.B. Fisher, “Direct least squares fitting of ellipses”, IEEE Xplore 1, 253‒257 (1996), doi: 10.1109/ ICPR.1996.546029.
  31.  E. Cuevas, D. Zaldivar, M. Pérez-Cisneros, and M. Ramírez-Ortegón, “Circle detection using discrete differential evolution optimization”, Pattern Anal. Appl. Springer. 14, 93‒107 (2011), doi: 10.1007/s10044-010-0183-9.
  32.  E. Cuevas, M. González, D. Zaldívar, and M. Pérez-Cisneros, “Multi-ellipses detection on images inspired by collective animal behavior”, Neural. Comput. Appl. 24, 1019‒1033 (2014), doi: 10.1007/s00521-012-1332-4.
  33.  T. Witkowski, P. Antczak, and A. Antczak, “Multi-objective decision making and search space for the evaluation of production process scheduling”, Bull. Pol. Ac.: Tech. 3(57), 195‒208 (2012), doi: 10.2478/v10175-010-0121-4.
  34.  J.C. Strikwerda, Finite difference schemes and partial differential equations, SIAM, 2004.
  35.  K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II”, IEEE Trans. Evol. Comput. 6(2), 182‒197 (2002), doi: 10.1109/4235.996017.
  36.  R. Storn and K. Price, “Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces”, J. Global Optim. 11(4), 341‒359 (1997).
  37.  K. Price, R.M. Storn, and J.A Lampinen, Differential evolution: a practical approach to global optimization, Springer-Verlag Berlin Heidelberg, 2006.
  38.  M.M. Ali and A. Törn, “Population set-based global optimization algorithms: some modifications and numerical studies”, Comput Oper Res. 31(10), 1703‒1725 (2004), doi: 10.1016/S0305-0548(03)00116-3.
  39.  Y. Fukuyama, Fundamentals of particle swarm optimization techniques. Modern Heuristic Optimization Techniques: Theory and applications to power systems, pp. 71–87, John Wiley & Sons, 2008.
  40.  C. Blum and X. Li,“Swarm Intelligence in Optimization” in Swarm Intell, pp. 43‒85, ed. Blum C. Merkle D. Natural Computing Series: Springer, Berlin, Heidelberg, 2008, doi: 10.1007/978-3-540-74089-6_2.
  41.  R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory”, in MHS’95. Proc. Sixth Int. Symp. Micro Mach. Hum. Sci, 1995, pp. 39–43, doi: 10.1109/MHS.1995.494215.
  42.  L.G. de la Fraga, I.V. Silva, and N. Cruz-Cortés, “Euclidean Distance Fit of Conics Using Differential Evolution” in: Evolutionary Image Analysis and Signal Processing, pp. 171‒184, Springer, Berlin, Heidelberg, 2009, doi: 10.1007/978-3-642-01636-3_10.
  43.  C. Robert and G. Casella, Monte Carlo statistical methods, Springer Science and Business Media, 2013.
Go to article

Authors and Affiliations

Janusz Rusek
1
ORCID: ORCID
Krzysztof Tajduś
2
ORCID: ORCID

  1. AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
  2. Strata Mechanics Research Institute, Polish Academy of Sciences, Reymonta 27, 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The most worldwide method of liquidating underground hard coal mines is by spontaneous flooding as the result of the discontinuation of the rock mass drainage. Due to the hydrological reconstruction of the previously disturbed water system by mining operations, the movements of the rock mass with the opposite direction than subsidence appear. These movements are called rock mass uplift. This paper aims to present possible hazards related to land surface objects and the environment, which can appear during the flooding of the underground mine. The issue of proper forecasting of this phenomenon has so far been marginal in world literature. To date, only a few analytical methods have been used to predict the possible effects of surface deformation. Nowadays, the most common analytical method of forecasting surface deformation caused by the liquidation of underground workings by flooding is Sroka’s method. In this paper, the authors have presented analyses of flooding scenarios developed for a Polish mine and their impact on the land surface as well as the environment. The scenarios presented in the manuscript were selected for analysis as the most probable concerning the mine and the future plans of the mining enterprise. The process of flooding coal mines results in several risks for surface objects and underground infrastructure. This is why the uplift caused by the flooding of the mine should be predicted. The resulting uplifting movements can also, apart continuous deformation lead to the creation of much more dangerous phenomena involving discontinuous deformations.
Go to article

Bibliography

  1. Álvarez, R., Ordóñez, A., De Miguel, E. & Loredo, C. (2016). Prediction of the flooding of a mining reservoir in NW Spain. Journal of Environmental Management, 184, 219–228. DOI: 10.1016/j.jenvman.2016.09.072
  2. Baglikow, V. (2011). Damage-relevant effects of mine water recovery – conclusions from the Erkelenz hard coal district. Markscheidewesen, 118, 10–16.
  3. Bekendam, R.F. & Pöttgens, J.J.E. (1995). Ground movements over the coal mines of southern Limburg, The Netherlands, and their relation to rising mine waters. 5tfh International Symposium on Land Subsidence, 3–12.
  4. Blachowski, J., Cacoń, S., & Milczarek, W. (2009). Analysis of post-mining ground deformations caused by underground coal extractions in complicated geological conditions. Acta Geodyn. Geomater, 6(3), 351–357.
  5. Caro Cuenca, M., Hooper, A.J. & Hanssen, R.F. (2013). Surface deformation induced by water influx in the abandoned coal mines in Limburg, The Netherlands observed by satellite radarinterferometry. Journal of Applied Geophysics, 88, 1–11. DOI: 10.1016/j.jappgeo.2012.10.003
  6. Devleeschouwer, X., Declercq, P.Y., Flamion, B., Brixko, J., Timmermans, A. & Vanneste, J. (2008). Uplift revealed by radar interferometry around Liège (Belgium): a relation with rising mining groundwater. Proceedings of Post-Mining 2008, 1–13.
  7. Dudek, M., Rusek, J., Tajduś, K. & Słowik, L. (2021). Analysis of steel industrial portal frame building subjected to loads resulting from land surface uplift following the closure of underground mines. Archives of Civil Engineering, 67(3). Dudek, M., & Tajduś, K. (2021). FEM for prediction of surface deformations induced by flooding of steeply inclined mining seams. Geomechanics for Energy and the Environment, 100254. DOI: 10.1016/j.gete.2021.100254
  8. Dudek, M., Tajduś, K., Misa, R. & Sroka, A. (2020). Predicting of land surface uplift caused by the flooding of underground coal mines – A case study. International Journal of Rock Mechanics and Mining Sciences, 132, 104377. DOI: 10.1016/j.ijrmms.2020.104377
  9. Fenk, J. (2000). An analytical solution for calculating urface heave when flooding underground mine workings , 107, 4220–4422.
  10. Gudmundsson, A., Simmenes, T.H., Larsen, B. & Philipp, S.L. (2010). Effects of internal structure and local stresses on fracture propagation, deflection, and arrest in fault zones. Journal of Structural Geology, 32(11), 1643–1655. DOI: 10.1016/j.jsg.2009.08.013
  11. Heitfeld, K., Heitfeld, M., Rosner, P. & Sahl, H. (2003). Controlled mine water increase in Aachen and Sudlimburg stone coal district. 5. Aachener Bergschandemkundliches Kolloquium, 71–85. (in German)
  12. Heitfeld, M., Rosner, P. & Mühlenkamp, M. (2016). Gutachten zu den Bodenbewegungen im Rahmen des stufenweisen Grubenwasseranstiegs in den Wasserprovinzen Reden und
  13. Duhamel. Bewertung des Einwirkungspotentials und Monitoring Konzept-Anstieg bis – 320 m NHN.
  14. Heitfeld, M., Rosner, P., Mühlenkamp, M. & Sahl, H. (2004). Bergschäden im Erkelenzer Steinkohlenrevier. 4. Altbergbaukolloquium, 281–295.
  15. Jakubick, A., Jenk, U. & Kahnt, R. (2002). Modelling of mine flooding and consequences in the mine hydrogeological environment: flooding of the Koenigstein mine, Germany. Environmental Geology, 42(2–3), 222–234. DOI: 10.1007/s00254-001-0492-9
  16. Jewartowski, T., Mizerka, J. & Mróz, C. (2015). Coal-Mine Liquidation as a Strategic Managerial Decision: a Decision-Making Model Based on the Options Approach / Archives of Mining Sciences, 60(3), 697–713. DOI: 10.1515/amsc-2015-0046 (in Polish)
  17. John, A. (2021). Monitoring of Ground Movements Due to Mine Water Rise Using Satellite-Based Radar Interferometry – A Comprehensive Case Study for Low Movement Rates in the German Mining Area Lugau/Oelsnitz. Mining, 1(1), 35–58. DOI: 10.3390/mining1010004
  18. Knothe, S. (1984). Prognozowanie wpływów eksploatacji górniczej. Wydawnictwo Śląsk (in Polish).
  19. Kołodziejczyk, P., Musioł, S. & Wesołowski, M. (2007). Ability to forecast mining area uplift as a result of mine flooding. 63(9), 6–11.
  20. Kowalska, I. J. (2014). Risk management in the hard coal mining industry: Social and environmental aspects of collieries’ liquidation. Resources Policy, 41, 124–134. DOI: 10.1016/j.resourpol.2014.05.002
  21. Krzemień, A., Suárez Sánchez, A., Riesgo Fernández, P., Zimmermann, K. & González Coto, F. (2016). Towards sustainability in underground coal mine closure contexts: A methodology proposal for environmental risk management. Journal of Cleaner Production, 139, 1044–1056. DOI: 10.1016/j.jclepro.2016.08.149
  22. Liu, D. (2020). A numerical method for analyzing fault slip tendency under fluid injection with XFEM. Acta Geotechnica, 15(2), 325–345. DOI: 10.1007/s11440-019-00814-w
  23. Management of environmental risks during and after mine closure, Contract No. RFCR-CT-2015-00004. (2020).
  24. Milczarek, W. (2011). Analysis of changes in the rock mass surface after mining in a selected area of the former Wałbrzych Basin.Wroclaw University of Science and Technology. (in Polish).
  25. Mróz, T.M. & Grabowska, W. (2021). The use of geothermal energy in co-generated heat and power production in Poland – a case study. Archives of Environmental Protection, 47(3), 82–91. DOI: 10.24425/aep.2021.138466
  26. Pöttgens, J.J.E. (1985). Bodenhebung durch ansteigendes Grubenwasser. 6. Internationaler Kongress Für Markscheidewesen, 928–938.
  27. Preuβe, A., Kateloe, H.J. & Sroka, A. (2013). Subsidence and uplift prediction in German and Polish hard coal mining.Markscheidewesen, 120, 23–34.
  28. Samsonov, S., D’Oreye, N. & Smets, B. (2013). Ground deformation associated with post-mining activity at the French–German border revealed by novel InSAR time series method. International Journal of Applied Earth Observation and Geoinformation, 23, 142–154. DOI: 10.1016/j.jag.2012.12.008
  29. Sattari, A. & Eaton, D. (2014). Finite element modelling of fault stress triggering due to hydraulic fracturing. GeoConvention 2014: FOCUS Adapt, Refine, Sustain.
  30. Schaefer, W. (2007). Ground movements in the tectonics of the Rhenish lignite mining area, 215–225. (in Polish).
  31. Sroka, A. (2005). Ein Beitrag zur Vorausberechnung der durch den Grubenwasseranstieg bedingten Hebungen. 5. Altbergbau- -Kolloquium, 453–462.
  32. Sroka, A., Preuβe, A., Tajduś, K. & Misa, R. (2016). Gutachterliche Stellungnahme zum Einfluss möglicher Grubenwasserregulierungsmaßnahmen auf die Abwasserinfrastruktur der Emschergenossenschaft Teil 1/1: Markscheiderische Beurteilung.
  33. Sroka, A., Tajduś, K. & Misa, R. (2017). Gutachterliche Stellungnahme zur Auswirkung des Grubenwasseranstiegs im Ostfeld des Bergwerkes Ibbenbüren auf die Tagesoberfläche.
  34. Tajduś, A. & Tokarski, S. (2020). Risks Related to Energy Policy of Poland Until 2040 (EPP 2040). Archives of Mining Sciences, 877–899.
  35. Tajduś, K., Sroka, A., Misa, R. & Dudek, M. (2017). Examples of threats to the ground surface with discontinuous deformations of the surface type appearing over liquidated underground mining excavations, 19(3), 3–10. (in Polish).
  36. Vervoort, A. & Declercq, P.-Y. (2017). Surface movement above old coal longwalls after mine closure. International Journal of Mining Science and Technology, 27(3), 481–490. DOI: 10.1016/j.ijmst.2017.03.007
  37. Vervoort, A. & Declercq, P.-Y. (2018). Upward surface movement above deep coal mines after closure and flooding of underground workings. International Journal of Mining Science and Technology, 28(1), 53–59. https://doi.org/10.1016/j.ijmst.2017.11.008
  38. Wasielewski, R., Wojtaszek, M. & Plis, A. (2020). Investigation of fly ash from co-combustion of alternative fuel (SRF) with hard coal in a stoker boiler. Archives of Environmental Protection, 46 (No 2), 58–67. DOI: 10.24425/aep.2020.133475
  39. Wesołowski, M. (2012). Computer simulation of the impact of flooding mine workings of the former mine "Gliwice" and "Pstrowski" on land surface, 68(5), 54–59. (in Polish).
  40. Wysocka, M., Skubacz, K., Chmielewska, I., Urban, P. & Bonczyk, M. (2019). Radon migration in the area around the coal mine during closing process. International Journal of Coal Geology, 212, 103253. DOI: 10.1016/j.coal.2019.103253
  41. Zwierzchowski, R. & Różycka-Wrońska, E. (2021). Operational determinants of gaseous air pollutants emissions from coal-fired district heating sources. Archives of Environmental Protection, 47(3), 108–119. DOI: 10.24425/aep.2021.1384
Go to article

Authors and Affiliations

Mateusz Dudek
1
ORCID: ORCID
Krzysztof Tajduś
1
ORCID: ORCID
Janusz Rusek
2
ORCID: ORCID

  1. Strata Mechanics Research Institute, Polish Academy of Sciences, ul. Reymonta 27, 30-059 Cracow, Poland
  2. Faculty of Mining Surveying and Environmental Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Mining tremors may have an impact on the safety risk of steel pipelines through their effects. It is therefore important to quantify the impact of a high-energy mining tremor in terms of strength. In addition, a comparison of the results obtained with the effect of a seismic tremor can illustrate the scale of such a hazard. Recently, this has been a very frequently raised issue in the area of surface protection against negative mining impacts and the protection of post-mining areas. Ensuring safe use is particularly important for gas transmission elements. This paper presents the results of a comparative analysis of the impact of mining tremors and seismic impacts on a specimen steel pipeline segment. The analyzed pipeline is located in the eastern part of Poland in the area of paraseismic impacts of the LGCD (Legnica-Glogow Copper District) mine. For this purpose, an analytical approach was used to assess the impact of seismic wave propagation on underground linear infrastructure facilities. Accelerogram records for the 02-06-2023 seismic tremor from Turkey and the mining tremor for 11-25-2020 were used. In the case of the design of underground pipelines, the cross-section of the element for which measures describing wall stress and the ovalization of the cross-section are determined is usually considered. In the situation of the influence of seismic wave propagation or so-called permanent ground deformation, the response of the pipeline in the longitudinal direction is analyzed. As a final result, longitudinal strains transferred to the pipeline as a consequence of the propagating seismic wave and mining tremor were determined. The absolute difference between the deformations in the ground and along the length of the pipeline was determined. This type of analysis has not been carried out before and provides new insights into the topic of paraseismic impacts on the scale of their interaction with natural earthquakes. Mining tremor data was obtained from the mine’s seismological department. The seismic tremor data, on the other hand, was downloaded via the publicly available ESM (Engineering Strong- Motion Database).
Go to article

Authors and Affiliations

Janusz Rusek
1
ORCID: ORCID
Leszek Słowik
2
ORCID: ORCID
Krzysztof Tajduś
1
ORCID: ORCID

  1. AGH University of Krakow al. Adama Mickiewicza 30, 30-059 Krakow, Poland
  2. ITB Building Research Institute ul. Filtrowa 1, 00-611 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a new geotechnical solution indicating a possibility of effective building structures protection. The presented solutions enable minimization of negative effects of underground mining operations. Results of numerical modelling have been presented for an example of design of preventive ditches reducing the influence of mining operations on the ground surface. To minimize the mining damage or to reduce its reach it is reasonable to look for technical solutions, which would enable effective protection of building structures. So far authors concentrated primarily on the development of building structure protection methods to minimize the damage caused by the underground mining. The application of geotechnical methods, which could protect building structures against the mining damage, was not considered so far in scientific papers. It should be noticed that relatively few publications are directly related to those issues and there are no practical examples of effective geotechnical protection. This paper presents a geotechnical solution indicating a possibility of effective protection of building structures. The presented solutions enable minimization of negative effects of underground mining operations. Results of numerical modelling have been presented for an example of design of preventive ditches reducing the influence of mining operations on the ground surface. The calculations were carried out in the Abaqus software, based on the finite element method.

Go to article

Authors and Affiliations

Rafał Misa
ORCID: ORCID
Krzysztof Tajduś
ORCID: ORCID
Anton Sroka
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The liquidation of underground mines by the flooding leads to movements of the rock mass and land surface as a result of pressure changes in the flooded zones. The changes resulting from the rising water table caused by the changes in the stress and strain state, as well as the physical and mechanical properties of rock layers, can lead to damage to building structures and environmental changes, such as chemical pollution of the surface water. For this reason, the ability to predict the movements of rock masses generated as a result of mine closure by flooding serves a key function in relation to the protection of the land surface and buildings present thereon. This paper presents an analysis of a steel industrial portal-frame structure under loading generated by the liquidation of a mine by flooding. The authors obtained land surface uplift results for the liquidated mine and used them in a numerical simulation for the example building. Calculations were performed for different cases, and the results were compared to determine whether limit states may be exceeded. A comparison was made between the cases for the design state and for additional loading caused by the uplift of the subsurface layer of the rock mass.
Go to article

Bibliography


[1] M. Kawulok, "Mining damages in construction". Warszawa: Instytut Techniki Budowlanej, 2010. (in Polish)
[2] J. Kwiatek, "Civil structures in mining areas". Katowice: Główny Instytut Górnictwa, 2006. (in Polish)
[3] J. A. Ledwoń, "Civil engineering in mining areas". Warszawa: Arkady, 1983. (in Polish)
[4] K. Tajdus, “Numerical simulation of underground mining exploitation influence upon terrain surface,” Arch. Min. Sci., vol. 58, no. 3, 2013, https:/doi.org/10.2478/amsc-2013-0042
[5] K. Tajduś, R. Misa, and A. Sroka, “Analysis of the surface horizontal displacement changes due to longwall panel advance,” Int. J. Rock Mech. Min. Sci., vol. 104, 2018, https://doi.org/10.1016/j.ijrmms.2018.02.005
[6] A. Saeidi, O. Deck, M. Al heib, and T. Verdel, “Development of a damage simulator for the probabilistic assessment of building vulnerability in subsidence areas,” Int. J. Rock Mech. Min. Sci., vol. 73, pp. 42–53, Jan. 2015, doi: https://doi.org/10.1016/j.ijrmms.2014.10.007
[7] A. Sroka, S. Knothe, K. Tajduś, and R. Misa, “Point Movement Trace Vs. The Range Of Mining Exploitation Effects In The Rock Mass,” Arch. Min. Sci., vol. 60, no. 4, 2015, doi: https://doi.org/10.1515/amsc-2015-0060
[8] A. Misa Rafałand Sroka, K. Tajduś, and M. Dudek, “Analytical design of selected geotechnical solutions which protect civil structures from the effects of underground mining,” J. Sustain. Min., 2019, doi: https://doi.org/10.1016/j.jsm.2018.10.002
[9] L. Szojda and Ł. Kapusta, “Evaluation of the Elastic Model of a Building on a Curved Mining Ground Based on the Results of Geodetic Monitoring,” Arch. Min. Sci., vol. 65, no. No 2, pp. 213–224, 2020, doi: https://doi.org/10.24425/ams.2020.133188
[10] I. Djamaluddin, Y. Mitani, and T. Esaki, “Evaluation of ground movement and damage to structures from Chinese coal mining using a new GIS coupling model,” Int. J. Rock Mech. Min. Sci., vol. 48, no. 3, pp. 380–393, Apr. 2011, doi: https://doi.org/10.1016/j.ijrmms.2011.01.004
[11] C. Braitenberg, T. Pivetta, D. F. Barbolla, F. Gabrovšek, R. Devoti, and I. Nagy, “Terrain uplift due to natural hydrologic overpressure in karstic conduits,” Sci. Rep., vol. 9, no. 1, p. 3934, Dec. 2019, doi: https://doi.org/10.1038/s41598-019-38814-1
[12] N. Fowkes et al., “Models for the effect of rising water in abandoned mines on seismic activity,” Int. J. Rock Mech. Min. Sci., vol. 77, pp. 246–256, Jul. 2015, doi: https://doi.org/10.1016/j.ijrmms.2015.04.011
[13] G. Strozik, R. Jendruś, A. Manowska, and M. Popczyk, “Mine Subsidence as a Post-Mining Effect in the Upper Silesia Coal Basin,” Polish J. Environ. Stud., vol. 25, no. 2, pp. 777–785, 2016, doi: https://doi.org/10.15244/pjoes/61117
[14] K. Heitfeld, M. Heitfeld, P. Rosner, and H. Sahl, “The controlled rise in mine water in the Aachen and Sud Limburg coalfields” in 5. Aachener Bergschandemkundliches Kolloquium, 2003, pp. 71–85. (in German)
[15] A. Jakubick, U. Jenk, and R. Kahnt, “Modelling of mine flooding and consequences in the mine hydrogeological environment: flooding of the Koenigstein mine, Germany,” Environ. Geol., vol. 42, no. 2–3, pp. 222–234, Jun. 2002, doi: https://doi.org/10.1007/s00254-001-0492-9
[16] A. Krzemień, A. Suárez Sánchez, P. Riesgo Fernández, K. Zimmermann, and F. González Coto, “Towards sustainability in underground coal mine closure contexts: A methodology proposal for environmental risk management,” J. Clean. Prod., vol. 139, pp. 1044–1056, Dec. 2016, doi: https://doi.org/10.1016/j.jclepro.2016.08.149
[17] A. Sroka, K. Tajduś, and R. Misa, “Expert opinion on the impact of the rise in mine water in the eastern field of the Ibbenbüren mine on the land surface”, 2017. (in German)
[18] “Management of environmental risks during and after mine closure (acronym: MERIDA), Contract No. RFCR-CT-2015-00004,” 2020.
[19] P. Riesgo Fernández, G. Rodríguez Granda, A. Krzemień, S. García Cortés, and G. Fidalgo Valverde, “Subsidence versus natural landslides when dealing with property damage liabilities in underground coal mines,” Int. J. Rock Mech. Min. Sci., vol. 126, p. 104175, Feb. 2020, doi: https://doi.org/10.1016/j.ijrmms.2019.104175
[20] A. Vervoort, “Surface movement above an underground coal longwall mine after closure,” Nat. Hazards Earth Syst. Sci., vol. 16, no. 9, pp. 2107–2121, Sep. 2016, doi: https://doi.org/10.5194/nhess-16-2107-2016
[21] M. Dudek, K. Tajduś, R. Misa, and A. Sroka, “Predicting of land surface uplift caused by the flooding of underground coal mines – A case study,” Int. J. Rock Mech. Min. Sci., vol. 132, pp. 104–377, Aug. 2020, doi: https://doi.org/10.1016/j.ijrmms.2020.104377
[22] A. Preuβe, H. J. Kateloe, and A. Sroka, “Subsidence and uplift prediction in German and Polish hard coal mining,” Markscheidewesen, vol. 120, pp. 23–34, 2013.
[23] A. Vervoort and P.-Y. Declercq, “Surface movement above old coal longwalls after mine closure,” Int. J. Min. Sci. Technol., vol. 27, no. 3, pp. 481–490, May 2017, doi: https://doi.org/10.1016/j.ijmst.2017.03.007
[24] A. Vervoort and P.-Y. Declercq, “Upward surface movement above deep coal mines after closure and flooding of underground workings,” Int. J. Min. Sci. Technol., vol. 28, no. 1, pp. 53–59, Jan. 2018, doi: https://doi.org/10.1016/j.ijmst.2017.11.008
[25] M. Wesołowski, R. Mielimąka, R. Jendruś, and M. Popczyk, “Influence Analysis of Mine Flooding from the Environmental Standpoint: Surface Protection,” Polish J. Environ. Stud., vol. 27, no. 2, pp. 905–915, Jan. 2018, https://doi.org/doi: 10.15244/pjoes/76114
[26] V. Baglikow, “Damage-relevant effects of the rise in mine water in the Erkelenz hard coal district. Publication series Institute for Mining Surveying,” Rheinisch- Westfälischen Technischen Hochschule Aachen, 2010. (in German)
[27] K. Firek, J. Rusek, and A. Wodyński, “Decision Trees in the Analysis of the Intensity of Damage to Portal Frame Buildings in Mining Areas,” Arch. Min. Sci., vol. 60, no. 3, 2015, doi: https://doi.org/10.1515/amsc-2015-0055
[28] A. Cholewicki, M. Kawulok, Z. Lipski, and J. Szulc, Principles for determining loads and checking the limit states of civil structures located in mining areas with reference to the Eurocodes. Design according to Eurocodes. Warszawa: Instytut Techniki Budowlanej, 2012. (in Polish)
[29] EN 1990:2004 Eurocode - Basis of structural design
[30] Autodesk, “Robot Structural Analysis Professional.” 2020.
[31] EN 1991-1-3. Eurocode 1: Actions on structures - Part 1–3: General actions – Snow loads
[32] EN 1991-1-4. Eurocode 1: Actions on structures - Part 1–3: General actions – Wind loads
Go to article

Authors and Affiliations

Mateusz Dudek
ORCID: ORCID
Janusz Rusek
ORCID: ORCID
Krzysztof Tajduś
ORCID: ORCID
Leszek Słowik
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Coal is the main energy source in China, but its underground mining causes surface subsidence, which seriously damages the ecological and living environments. How to calculate subsidence accurately is a core issue in evaluating mining damage. At present, the most commonly used method of calculation is the Probability Integral Method (PIM), based on a normal distribution. However, this method has limitations in thick topsoil (thickness > 100 m), in that the extent of the calculated boundary of the subsidence basin is smaller than its real extent, and this has an undoubted impact on the accurate assessment of the extent of mining damage. Therefore, this paper introduces a calculation model for surface subsidence based on a Cauchy distribution for thick topsoil conditions. This not only improves the accuracy of calculation at the subsidence basin boundary, but also provides a universal method for the calculation of surface subsidence.

Go to article

Authors and Affiliations

Yue Jiang
Rafał Misa
ORCID: ORCID
Krzysztof Tajduś
ORCID: ORCID
Anton Sroka
ORCID: ORCID
Yan Jiang
Download PDF Download RIS Download Bibtex

Abstract

The article presents a methodology for determining the value of the expansion coefficient of a reconsolidated caving zone in the context of forecasting the rise in underground mine water levels and consequent surface subsidence caused by the process of flooding the closed coal mines. The paper also provides a brief characterisation of analytical predictive models regarding surface subsidence during the process of flooding coal mines. In order to describe the vertical deformation of the reconsolidated porous rock mass in the caving zone, a linear-elastic medium of Biot was utilised. The conducted theoretical calculations demonstrate a high agreement with the results obtained through the identification of the expansion coefficient parameter based on the analysis of in-situ subsidence measurements in Dutch and German mining areas. The proposed methodology was applied to a real case study involving the forecasting of the impact of the flooding process on the underground workings of the German Ibbenbüren mine. The article constitutes a significant contribution to the field of forecasting the rise in underground mine water levels and surface subsidence during the process of flooding closed coal mines. The presented methodology and obtained results can be valuable for researchers, engineers, and decision-makers involved in the planning and management of mining areas.
Go to article

Authors and Affiliations

Rafał Misa
1
ORCID: ORCID
Mateusz Dudek
1
ORCID: ORCID
Anton Sroka
1
ORCID: ORCID
Krzysztof Tajduś
2
ORCID: ORCID
Dawid Mrocheń
1
ORCID: ORCID

  1. Strata Mechanics Research Institute, Polish Academy of Science, Krakow, Poland
  2. AGH University of Science and Technology, Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents one of the environmental problems occurring during underground mine closures: according to the underground coal mine closure programme in Germany, the behaviour of the land surface caused by flooding of the entire planned mining area – the Ruhr District – had to be addressed. It was highlighted that water drainage would need to be continuous; otherwise, water levels would rise again in the mining areas, resulting in flooding of currently highly urbanised zones. Based on the variant analysis, it was concluded that the expected uniform ground movements caused by the planned rise in the mining water levels (comprising a part of two concepts – flooding up to the level of –500 m a.s.l. and −600 m a.s.l.), in the RAG Aktiengesellschaft mines, will not result in new mining damage to traditional buildings. The analysis included calculations of the maximum land surface uplift and the most unfavourable deformation factor values on the land surface, important from the point of view of buildings and structures: tilt T, compressive strain ε– and tensile strain ε+. The impact of flooding on potential, discontinuous land surface deformation was also analysed.
Go to article

Authors and Affiliations

Krzysztof Tajduś
1
ORCID: ORCID
Anton Sroka
2
ORCID: ORCID
Mateusz Dudek
2
ORCID: ORCID
Rafał Misa
2
ORCID: ORCID
Stefan Hager
3
ORCID: ORCID
Janusz Rusek
1
ORCID: ORCID

  1. AGH University of Krakow, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
  2. Strata Mechanics Research Institutes of Polish Academy of Science, 27 Reymonta Str., 30-059 Kraków, Poland
  3. R AG Aktiengesellschaft, Essen, Germany
Download PDF Download RIS Download Bibtex

Abstract

The article presents three German-located case studies based on stochastic methods founded by the theory proposed by Knothe and the development of the ‘Ruhrkohle method’ according to Ehrhardt and Sauer. These solutions are successfully applied to predict mining-induced ground movements. The possibility of forecasting both vertical and horizontal ground movements has been presented in the manuscript, which allowed for optimization mining projects in terms of predicted ground movements.
The first example presents the extraction of the Mausegatt seam beneath the district of Moers-Kapellen in the Niederberg mine. Considering, among others, the adaption of the dynamic impact of the underground operations to the mining-induced sensitivity of surface objects, the maximum permissible rate of the face advance has been determined.
The second example presents the extraction of coal panel 479 in the Johann seam located directly in the fissure zone of Recklinghausen-North. Also, in this case, the protection of motorway bridge structure (BAB A43/L225) to mining influences has been presented. The Ruhrkohle method was used as a basis for the mathematical model that was developed to calculate the maximum horizontal opening of the fissure zone and the maximum gap development rate.
Part of the article is dedicated to ground uplift due to rising mine water levels. Although it is not the main factor causing mining-related damage, such movements in the rock masses should also be predicted. As the example of the Königsborn mine, liquidated by flooding, shows stochastic processes are well suited for predicting ground uplift. The only condition is the introduction of minor adjustments in the model and the use of appropriate parameters.
Go to article

Authors and Affiliations

Anton Sroka
1
ORCID: ORCID
Stefan Hager
2
ORCID: ORCID
Rafał Misa
1
ORCID: ORCID
Krzysztof Tajduś
1
ORCID: ORCID
Mateusz Dudek
1
ORCID: ORCID

  1. Strata Mechanics Research Institute, Polish Academy of Science, Kraków, Poland
  2. RAG Aktiengesellschaft, Im Welterbe 10, 45141 Essen, Germany

This page uses 'cookies'. Learn more