Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In furrow irrigation, the maximum lateral movement of water in ridges is more desirable than the vertical downward movement. This can be achieved by compacting the furrows. Thus, the study examines the impact on furrow soil compaction by tractor wheel trafficking during mechanical operations in the different soil types. In this experiment, the three-wheel tractor compaction includes: 1) control (no soil compaction), 2) compaction through 3-wheel tractor passes, and 3) compaction through 6-wheel passes under three different soil textural classes such as: clay loam, silty clay loam and silty loam soils. The impact of various treatments on clay loam, silty clay loam, and silty loam under 3- and 6-wheel passes showed increased bulk density (7–12%), field capacity (9–19%), ridge storage efficiency (35–38%), water use efficiency (16–20.5%) and decreased soil porosity (7–16%), infiltration (8–20%), and furrow storage efficiency (28–41%) over the control. This study shows comparable results of 6-passes with other studies in which more than 6-passes were used to compact the soil. This study suggested that farmers can maximise water use efficiency by compacting their furrows using 6-passes tractor trafficking.
Go to article

Bibliography

AHMADI I., GHAUR H. 2015. Effects of soil moisture content and tractor wheeling intensity on traffic-induced soil compaction. Journal of Central European Agriculture. Vol. 16(4) p. 489–502. DOI 10.5513/JCEA01/16.4.1657.
BEUTLER A.N., CENTURION J.F., SILVA A.P., CENTURION M.A.P., LEONE C.L., FREDDI O.S. 2008. Soil compaction by machine traffic and least limiting water range related to soybean yield. Pesquisa Agropecuaria Brasileira. Vol. 43(11) p. 1591–1600.
BURT C.M., CLEMMENS A.J., STRELKOFF T.S., SOLOMON K.H., BLIESNER K.H., HARDY R.D., HOWELL R.A., EISENHAUER E. 1997. Irrigation performance measures: Efficiency and uniformity. Journal of Irrigation and Drainage Engineering. Vol. 123 p. 423–442. DOI 10.1061/(ASCE)0733-9437(1997)123:6(423).
GHAFFAR A.K., HASSAN A., MUHAMMAD I., ULLAH E. 2015. Assessing the performance of different irrigation techniques to enhance the water use efficiency and yield of maize under deficit water supply. Soil Environment. Vol. 34(2) p. 166–179.
HAMZA M.A., ANDERSON W.K. 2005. Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil Tillage Research. Vol. 82 p. 121–145. DOI 10.1016/j.still.2004.08.009.
IQBAL M., KHALIQ A., CHOUDHRY M.R.I. 1994. Comparison of volume balance and hydrodynamic models for level basin irrigation systems. Pakistan Journal Agricultural Sciences. Vol. 31 p. 37–40.
KIMARO J. 2019. A review on managing agro ecosystems for improved water use efficiency in the face of changing climate in Tanzania. Advances in Meteorology. Vol. 2019 p. 1–12. DOI 10.1155/2019/9178136.
LIPIEC J., HATANO R. 2003. Quantification of compaction effects on soil physical properties and crop growth. Geoderma. Vol. 116 p. 107– 136. DOI 10.1016/S0016-7061(03)00097-1.
LIU L., ZUO Y., ZHANG Q., YANG L., ZHAO E., LIANG L., TONG Y. 2018. Ridge-furrow with plastic film and straw mulch increases water availability and wheat production on the Loess Plateau. Scientific Reports. Vol. 8(1), 6503. DOI 10.1038/s41598-018-24864-4.
NAWAZ M.F., BOURRIÉ G., TROLARD F. 2013. Soil compaction impact and modelling. A review. Agronomy for Sustainable Development. Vol. 33 p. 291–309. DOI 10.1007/s13593-011-0071-8.
RAMEZANI N., SAYYAD G.A., BARZEGAR A.R. 2017. Tractor wheel compaction effect on soil water infiltration, hydraulic conductivity and bulk density. Malaysian Journal of Soil Science. Vol. 21 p. 47–61.
SAKAI H., NORDFJELL T., SUADICANI K., TALBOT B., BOLLEHUUS E. 2008. Soil compaction on forest soils from different kinds of tires and tracks and possibility of accurate estimate. Croatian Journal of Forest Engineering. Vol. 29 p. 15–27.
SHAIKH I.A., WAYAYOK A., MANGRIO M.A., KHATRI K.L., SOOMRO A., DAHRI S.A. 2017. Comparative study of irrigation advance based infiltration methods for furrow irrigated soils. Pertanika Journal of Science and Technology. Vol. 25(4) p. 1223–1234.
SHIRAZI S.M., ISMAIL Z., AKIB S., SHOLICHIN M., ISLAM M.A. 2011. Climatic parameters and net irrigation requirement of crops. International Journal of Physical Science. Vol. 6(1) p. 15–26. DOI 10.5897/IJPS10.683.
SILVA S., BARROS N., COSTA L., LEITE F. 2008. Soil compaction and eucalyptus growth in response to forwarder traffic intensity and load. Revista Brasileira de Ciência do Solo. Vol. 32 p. 921–932. DOI 10.1590/S0100-06832008000300002.
SIYAL A.A., SIYAL A.G., HASINI M.Y. 2011. Crop production and water use efficiency under subsurface porous clay pipe irrigation. Pakistan Journal of Agriculture, Agricultural Engineering and Veterinary Sciences. Vol. 27(1) p. 39–50.
SMITH C.W., JOHNSTON M.A., LORENTZ S. 1997. The effect of soil compaction and soil physical properties on the mechanical resistance of South African forestry soils. Geoderma. Vol. 78(1–2) p. 93–111. DOI 10.1016/S0016-7061(97)00029-3.
SORACCO C.G., LOZANO L.A., VILLARREAL R., PALANCAR T.C., COLLAZO D.J., SARLI G.O., FILGUEIRA R.R. 2015. Effects of compaction due to machinery traffic on soil pore configuration. Revista Brasileira de Ciência do Solo. Vol. 39 p. 408–415. DOI 10.1590/01000683 rbcs20140359.
TOLÓN-BECERRA A., BOTTA G.F., LASTRA-BRAVO X. TOURN M., RIVERO D. 2012. Subsoil compaction from tractor traffic in an olive (Olea europea L.) grove in Almería, Spain. Soil Use and Management. Vol. 28(4) p. 606–613. DOI 10.1111/sum.12002.
TRON S., BODNER G., LAIO F., RIDOLFI L., LEITNER D. 2015. Can diversity in root architecture explain plant water use efficiency? A modeling study. Ecological Modelling. Vol. 312 p. 200–210. DOI 10.1016/j.ecolmodel.2015.05.028.
ZHANG S.L., SADRAS V., CHEN X.P., ZHANG F.S. 2014. Water use efficiency of dry land maize in the Loess Plateau of China in response to crop management. Field Crops Research. Vol. 163 p. 55–63. DOI 10.1016/j.fcr.2014.04.003.
Go to article

Authors and Affiliations

Rahim Bux Vistro
1
Mashooque Ali Talpur
1
Irfan Ahmed Shaikh
1
Munir Ahmed Mangrio
1

  1. Sindh Agriculture University, Faculty of Agricultural Engineering, Tandojam, Hyderabad, 70060, Sindh, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

Arsenic is one of the most harmful pollutants in groundwater. In this paper, the Nepali bio sand filter (BSF) was modi-fied with different bio-adsorbents, and proved to be an efficient method for arsenic removal from groundwater. Three dif-ferent bio-adsorbents were used to modify the Nepali BSF. Iron nails and biochar BSF, ~96% and ~93% arsenic removal was achieved, within the range of WHO guidelines. In iron nails, BSF and biochar BSF ~15 dm3∙h–1 arsenic content water was treated. In the other two BSFs, rice-husk and banana peel were used, the arsenic removal efficiency was ~83% of both BSFs. Furthermore, the efficiency of rice-husk and banana peel BSFs can be increased by increasing the surface area of the adsorbent or by reducing the flow rate.

Go to article

Bibliography

AGRAFIOTI E., KALDERIS D., DIAMADOPOULOS E. 2014. Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. Journal of Environmental Management. Vol. 133 p. 309–314. DOI 10.1016/j.jenvman.2013.12.007.
AMIN M.N., KANECO S., KITAGAWA T., BEGUM A., KATSUMATA H., SUZUKI T., OHTA K. 2006. Removal of arsenic in aqueous solutions by adsorption onto waste rice husk. Industrial & Engineering Chemistry Research. Vol. 45(24) p. 8105–8110.
ARAIN G.M., ASLAM M., MAJIDANO S.A., KHUHAWAR M.Y. 2007. A preliminary study on the arsenic contamination of underground water of Matiari and Khairpur Districts, Sindh, Pakistan. Journal – Chemical Society of Pakistan. Vol. 29(5) p. 463–467.
ARUNAKUMARA K., WALPOLA B.C., YOON M.-H. 2013. Banana peel: A green solution for metal removal from contaminated waters. Korean Journal of Environmental Agriculture. Vol. 32(2) p. 108–116. DOI 10.5338/KJEA.2013.32.2.108.
ASGHAR U., PERVEEN F., ALVI S., KHAN F., SIDDQUI I., USMANI T. 2006. Contamination of arsenic in public water supply schemes of Larkana and Mirpurkhas Districts of Sind. Journal – Chemical Society of Pakistan. Vol. 28(2) p. 130–135.
BAKSHI S., BANIK C., RATHKE S.J., LAIRD D.A. 2018. Arsenic sorption on zero-valent iron-biochar complexes. Water Research. Vol. 137 p. 153–163. DOI 10.1016/j.watres.2018. 03.021.
HUANG Y., GAO M., DENG Y., KHAN Z.H., LIU X., SONG Z., QIU W. 2020. Efficient oxidation and adsorption of As(III) and As(V) in water using a Fenton-like reagent, (ferrihydrite)-loaded biochar. Science of the Total Environment. Vol. 715, 136957. DOI 10.1016/j.scitotenv.2020.136957.
ISLAM-UL-HAQ M., DEEDAR N., WAJID H. 2007. Groundwater arsenic contamination – A multi directional emerging threat to water scarce areas of Pakistan [online]. 6th International IAHS Groundwater Quality Conference, held in Fremantle, Western Australia, 2–7 December 2007. [Access 15.12.2019]. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.508.2478&rep=rep1&type=pdf
LATA S., SAMADDER S. 2014. Removal of heavy metals using rice husk: A review. International Journal of Environmental Research and Development. Vol. 4(2) p. 165–170.
LAWRINENKO M., LAIRD D.A. 2015. Anion exchange capacity of biochar. Green Chemistry. Vol. 17(9) p. 4628–4636. DOI 10.1039/C5GC00828J.
LEE C.-K., LOW K., LIEW S., CHOO C. 1999. Removal of arsenic(V) from aqueous solution by quaternized rice husk. Environmental Technology. Vol. 20(9) p. 971–978.
LIEN H.-L., WILKIN R.T. 2005. High-level arsenite removal from groundwater by zero-valent iron. Chemosphere. Vol. 59(3) p. 377–386. DOI. 10.1016/j.chemosphere.2004.10.055.
MOHAN D., PITTMAN Jr C.U. 2007. Arsenic removal from water/wastewater using adsorbents – A critical review. Journal of Hazardous Materials. Vol. 142(1–2) p. 1–53. DOI 10.1016/j.jhazmat.2007.01.006. MURTAZA G. M., ALI A. S., YAR M. 2007. A preliminary study on the arsenic contamination of underground water of Matiari and Khairpur Districts, Sindh, Pakistan. Journal of Chemical Society of Pakistan. Vol. 29 p. 463–467.
NGAI T.K., SHRESTHA R.R., DANGOL B., MAHARJAN M., MURCOTT S.E. 2007. Design for sustainable development – Household drinking water filter for arsenic and pathogen treatment in Nepal. Journal of Environmental Science and Health. Part A 42(12) p. 1879–1888.
PEHLIVAN E., TRAN T., OUÉDRAOGO W., SCHMIDT C., ZACHMANN D., BAHADIR M. 2013. Removal of As(V) from aqueous solutions by iron coated rice husk. Fuel Processing Technology. Vol. 106 p. 511–517. DOI 10.1016/j.fuproc.2012.09.021.
TABASSUM R.A., SHAHID M., NIAZI N.K., DUMAT C., ZHANG Y., IMRAN M., BAKHAT H.F., HUSSAIN I., KHALID S. 2019. Arsenic removal from aqueous solutions and groundwater using agricultural biowastes-derived biosorbents and biochar: a column-scale investigation. International Journal of Phytoremediation. Vol. 21(6) p. 509–518.
WHO 2006. Guidelines for drinking-water quality [electronic resource]: incorporating first addendum. Vol. 1, Recommendations. [Access 15.12.2019]. Available at: https://apps.who.int/iris/bitstream/handle/10665/43428/9241546964_eng.pdf
ZHANG W., TAN X., GU Y., LIU S., LIU Y., HU X., LI J., ZHOU Y., LIU S., HE Y. 2020. Rice waste biochars produced at different pyrolysis temperatures for arsenic and cadmium abatement and detoxification in sediment. Chemosphere. Vol. 250, 126268. DOI 10.1016/j.chemosphere.2020.126268.
ZHOU L., HUANG Y., QIU W., SUN Z., LIU Z., SONG Z. 2017. Adsorption properties of nano-MnO2 – biochar composites for copper in aqueous solution. Molecules. Vol. 22(1), 173. DOI 10.3390/molecules22010173.

Go to article

Authors and Affiliations

Ghulam S. Keerio
1
Hareef A. Keerio
2
ORCID: ORCID
Khalil A. Ibuphoto
3
Mahmood Laghari
1
Sallahuddin Panhwar
4
Mashooque A. Talpur
5

  1. Sindh Agriculture University, Department of Energy and Environment, Tandojam, Pakistan
  2. Hanyang University, Department of Civil and Environmental Engineering, Seoul, South Korea
  3. Sindh Agriculture University, Department of Farm Structures, Tandojam, Pakistan
  4. Mehran University of Engineering and Technology, US-Pakistan Centers for Advanced Studies in Water, Jamshoro, Pakistan
  5. Sindh Agriculture University, Department of Irrigation and Drainage, Tandojam, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

At present, Pakistan has been facing acute shortage of irrigation water and farmers have been using conventional irrigation methods for orchards, such as flood and basin irrigation, thus wasting huge amount of fresh water. Therefore, it is necessary to find efficient irrigation methods to cope with this major burning issue. The micro drip irrigation method is considered efficient but in the case of mango orchards there is a problem of irrigation frequency, number of emitters, and duration of flow from emitters to meet water demand. Considering the above, an experiment was conducted in the experimental field of the Sindh Agriculture University, Tandojam, by installing the drip system with two circular peripheries of lateral lines in clay loam soil covering the entire canopy of a mature mango tree. The radius of the first and second periphery around the tree trunk was 100 cm and 150 cm, respectively. Four emitters with 4 dm3∙h –1 discharge of individual dipper were fixed in each periphery. Emitters were tested for six different irrigation times, i.e. 1, 2, 3, 4, 5 and 6 h, to observe the moisture distribution pattern. Hydraulic characteristics, such as density, field capacity, porosity, infiltration rate, available water and permanent wilting point (PWP), were determined using standard methods (1.4 g∙cm –3, 33%, 49%, 8 mm∙h –1, 12.41% and 20% respectively). The texture class of the soil profile was determined as clay loam at the soil depth 0–120 cm. Fifty soil samples were collected at 0–10, 10– 30, 30–60, 60–90, and 90–120 cm depths and at 0–20, 20–40, 40–60, 60–80 and 80–100 cm distances on two opposite sides of emitters. The emitters provided sufficient moisture up to field capacity in clay loam soil with flow duration of 4 h. The maximum moisture distribution efficiency was 77.89% with flow duration of 4 h at vertical depth of 0–120 cm and 0–100 cm distance horizontally among four emitters as compared to 1, 2, 3 h flow duration which under irrigated the canopy area and 5, 6 h flow duration which excessively irrigated the canopy area of the mango tree. The water demand of the mango tree was met by 4 h flow duration which provided adequate moisture to the entire canopy up to 120 cm depth in the root zone and water saving was calculated as 15.91% under the installed drip irrigation system as compared with the conventional (basin) irrigation method.
Go to article

Authors and Affiliations

Shoukat Ali Soomro
1
ORCID: ORCID
Muhammad Saffar Mirjat
1
Munir Ahmed Mangrio
1
Mashooque Ali Talpur
1

  1. Sindh Agriculture University, Tandojam, Faculty of Agricultural Engineering, 70060, Hyderabad, Pakistan

This page uses 'cookies'. Learn more