Search results

Filters

  • Journals
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

MDAP-2 is a new antibacterial peptide with a unique structure that was isolated from house- flies. However, its biological characteristics and antibacterial mechanisms against bacteria are still poorly understood. To study the biological characteristics, antibacterial activity, hemolytic activi- ty, cytotoxicity to mammalian cells, and the secondary structure of MDAP-2 were detected; the results showed that MDAP-2 displayed high antibacterial activity against all of the tested Gram-negative bacteria. MDAP-2 had lower hemolytic activity to rabbit red blood cells; only 3.4% hemolytic activity was observed at a concentration of 800μg/ml. MDAP-2 also had lower cytotoxicity to mammalian cells; IC50 values for HEK-293 cells, VERO cells, and IPEC-J2 cells were greater than 1000 μg/ml. The circular dichroism (CD) spectra showed that the peptide most- ly has α-helical properties and some β-fold structure in water and in membrane-like conditions. MDAP-2 is therefore a promising antibacterial agent against Gram-negative bacteria. To deter- mine the antibacterial mechanism(s) of action, fluorescent probes, flow cytometry, and transmis- sion electron microscopy (TEM) were used to study the effects of MDAP-2 on membrane perme- ability, polarization ability, and integrity of Gram-negative bacteria. The results indicated that the peptide caused membrane depolarization, increased membrane permeability, and destroyed membrane integrity. In conclusion, MDAP-2 is a broad-spectrum, lower hemolytic activity, and lower cytotoxicity antibacterial peptide, which is mainly effective on Gram-negative bacteria. It exerts its antimicrobial effects by causing bacterial cytoplasm membrane depolarization, increas- ing cell membrane permeability and disturbing the membrane integrity of Gram-negative bacte- ria. MDAP-2 may offer a new strategy to for defense against Gram-negative bacteria.

Go to article

Authors and Affiliations

Z. Pei
X. Ying
Y. Tang
L. Liu
H. Zhang
S. Liu
D. Zhang
K. Wang
L. Kong
Y. Gao
H. Ma
Download PDF Download RIS Download Bibtex

Abstract

Porcine contagious pleuropneumonia (PCP) is a very serious respiratory disease which is difficult to prevent and treat. In this study, the therapeutic effects of lithium chloride (LiCl) on PCP were examined using a mouse model. A mouse model of PCP was established by intranasal infections with Actinobacillus pleuropneumoniae (App). Histopathological analysis was performed by routine paraffin sections and an H-E staining method. The inflammatory factors, TLR4 and CCL2 were analyzed by qPCR. The expression levels of p-p65 and pGSK-3ß were detected using the Western Blot Method. The death rates, clinical symptoms, lung injuries, and levels of TLR-4, IL-1ß, IL-6, TNF-α, and CCL2 were observed to decrease in the App-infected mice treated with LiCl. It was determined that the LiCl treatments had significantly reduced the mortality of the App-infected cells, as well as the expressions of p-p65 and pGSK-3ß. The results of this study indicated that LiCl could improve the pulmonary injuries of mice caused by App via the inhibition of the GSK-3β-NF-κB-dependent pathways, and may potentially become an effective drug for improving pulmonary injuries caused by PCP.
Go to article

Bibliography


Benga L, Hoeltig D, Rehm T, Rothkoetter HJ, Pabst R, Valentin- -Weigand P; FUGATO-consortium IRAS (2009) Expression levels of immune markers in Actinobacillus pleuropneumoniae infected pigs and their relation to breed and clinical symptoms. BMC Vet Res 5: 13.
Boren J, Shryock G, Fergis A, Jeffers A, Owens S, Qin W, Koenig KB, Tsukasaki Y, Komatsu S, Ikebe M, Idell S, Tucker TA (2017) Inhibition of glycogen synthase kinase 3β blocks mesomesenchymal transition and attenuates streptococcus pneumonia-mediated pleural injury in mice. Am J Pathol 187: 2461-2472.
Brogaard L, Klitgaard K, Heegaard PM, Hansen MS, Jensen TK, Skovgaard K (2015) Concurrent host-pathogen gene expression in the lungs of pigs challenged with Actinobacillus pleuropneumoniae. BMC Genomics 16: 417.
Chang Y, Chen C, Lin C, Lu S, Cheng M, Kuo C, Lin Y (2013) Regulatory role of GSK-3β on NF-κB, nitric oxide, and TNF-α in Group A Streptococcal infection. Mediators Inflamm 2013: 720689.
Chen K, Wu Y, Zhu M, Deng Q, Nie X, Li M, Wu M, Huang X (2013) Lithium chloride promotes host resistance against Pseudomonas aeruginosa keratitis. Mol Vis 19: 1502-1514.
Dugo L, Collin M, Allen DA, Patel NS, Bauer I, Mervaala EM, Louhelainen M, Foster SJ, Yaqoob MM, Thiemermann C (2005) GSK-3beta inhibitors attenuate the organ injury/ /dysfunction caused by endotoxemia in the rat. Crit Care Med 33: 1903-1912.
Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR (2000) Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406: 86-90.
Hoffmeister L, Diekmann M, Brand K, Huber R (2020) GSK3: a kinase balancing promotion and resolution Jope RS, Cheng Y, Lowell JA, Worthen RJ, Sitbon YH, Beurel E (2017) Stressed and inflamed, can GSK3 be blamed? Trends Biochem Sci 42: 180-192.
Jope RS, Yuskaitis CJ, Beurel E (2007) Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem Res 32: 577-595.
Hu P, Huang F, Niu J, Tang Z (2015) TLR-4 involvement in pyroptosis of mice with pulmonary inflammation infected by Actinobacillus pleuropneumoniae. Wei Sheng Wu Xue Bao 55: 650-656.
Kumar V (2018) Toll-like receptors in immunity and inflammatory diseases: past, present, and future. Int Immunopharmacol 59: 391-412.
Kumar V (2020) Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int Immunopharmacol 89: 107087.
Li B, Fang J, Zuo Z, Yin S, He T, Yang M, Deng J, Shen L, Ma X, Yu S, Wang Y, Ren Z (2018) Activation of porcine alveolar macrophages by Actinobacillus pleuropneumoniae lipopolysaccharide via the toll-like receptor 4/NF-kappaB-mediated pathway. Infect Immun 86: e00642-17.
Li H, Gao D, Li Y, Wang Y, Liu H, Zhao J (2018) Antiviral effect of lithium chloride on porcine epidemic diarrhea virus in Vitro. Res Vet Sci 118: 288-294.
Li N, Zhang X, Dong H, Zhang S, Sun J, Qian Y (2016) Lithium ameliorates LPS-induced astrocytes activation partly via inhibition of toll-Like receptor 4 expression. Cell Physiol Biochem 38: 714-725.
Liu X, Klein PS (2018) Glycogen synthase kinase-3 and alternative splicing. Wiley Interdiscip Rev RNA 9: e1501.
Makola RT, Mbazima VG, Mokgotho MP, Gallicchio VS, Matsebatlela TM (2020) The effect of lithium on inflammation-associated genes in lipopolysaccharide-activated Raw 264.7 macrophages. Int J Inflam 2020: 8340195.
Martin M, Rehani K, Jope RS, Michalek SM (2005) Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol. 6: 777-784.
Medunjanin S, Schleithoff L, Fiegehenn C, Weinert S, Zuschratter W, Braun-Dullaeus RC (2016) GSK-3β controls NF-kappaB activity via IKKγ/NEMO. Sci Rep 6: 38553.
Oviedo-Boyso J, Cortés-Vieyra R, Huante-Mendoza A, Yu HB, Valdez-Alarcón JJ, Bravo-Patiño A, Cajero- -Juárez M, Finlay BB, Baizabal-Aguirre VM (2011) The phosphoinositide-3-kinase-Akt signalling pathway is important for Staphylococcus aureus internalization by endothelial cells. Infect Immun 79: 4569-4577.
Paramel GV, Sirsjö A, Fransén K (2015) Role of genetic alterations in the NLRP3 and CARD8 genes in health and disease. Mediators Inflamm 2015: 846782.
Pereira MF, Rossi CC, Seide LE, Martins Filho S, Dolinski CM, Bazzolli DM (2018) Antimicrobial resistance, biofilm formation and virulence reveal Actinobacillus pleuropneumoniae strains’ pathogenicity complexity. Res Vet Sci 118: 498-501.
Raghavendra PB, Lee E, Parameswaran N (2014) Regulation of macrophage biology by lithium: a new look at an old drug. J Neuroimmune Pharmacol 9: 277-284.
Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49: 1603-1616.
Sassu EL, Bossé JT, Tobias TJ, Gottschalk M, Langford PR, Hennig-Pauka I (2018) Update on Actinobacillus pleuropneumoniae- knowledge, gaps and challenges. Transbound Emerg Dis 65 (Suppl 1): 72-90.
Snitow ME, Bhansali RS, Klein PS (2021) Lithium and therapeutic targeting of GSK-3. Cells 10: 255.
Song J, Bishop BL, Li G, Duncan MJ, Abraham SN (2007) TLR4 initiated and cAMP-mediated abrogation of bacterial invasion of the bladder. Cell Host Microbe 1: 287-298. Woodgett JR, Ohashi PS (2005) GSK3: an in-Toll-erant protein kinase? Nat Immunol 6: 751-752.
Zhang P, Katz J, Michalek SM (2009) Glycogen synthase kinase-3beta (GSK3beta) inhibition suppresses the inflammatory response to Francisella infection and protects against tularemia in mice. Mol Immunol 46: 677-687.
Zhao Y, Yan K, Wang Y, Cai J, Wei L, Li S, Xu W, Li M (2020) Lithium chloride confers protection against viral myocarditis via suppression of coxsackievirus B3 virus replication. Microb Pathog 144: 104169. of inflammation. Cells 9: 820.

Go to article

Authors and Affiliations

Y. Zhang
1
W. Xu
1
Y. Tang
1
F. Huang
1 2

  1. College of Veterinary Medicine, Hunan Agricultural University, Furong District, Nongda Road, No.1, Changsha 410128, China
  2. Hunan Engineering Technology Research Center for Veterinary Drugs, Hunan Agricultural University, Furong District, Nongda Road, No.1, Changsha 410128, China
Download PDF Download RIS Download Bibtex

Abstract

Reticuloendotheliosis virus (REV) is an avian oncogenic retrovirus that causes atrophy of immune organs, such as the spleen, thymus, and bursa of Fabricius, leading to severe immunosuppression. However, there is limited information describing the genes or microRNAs (miRNAs) that play a role in replicating REV-spleen necrosis virus (SNV). Our previous miRNA and RNA sequencing data showed that the expression of gga-miR-222b-5p was significantly upregulated in REV-SNV-infected chicken spleens of 7, 14, and 21 dpi compared to non-infected chicken spleens, but mitogen-activated protein kinase 10 (MAPK10), which is related to innate immunity, had the opposite expression pattern. To understand chicken cellular miRNA function in the virus-host interactions during REV infection, we used quantitative reverse transcription PCR (qRT-PCR) to determine whether the expression of gga-miR-222b-5p and MAPK10 in the spleen of specific-pathogen-free chickens at 28, 35, and 42 dpi was consistent with the first 3 time points, and dual-luciferase reporter assay was used to determine the targeting relationship between gga-miR-222b-5p and MAPK10. Results show that MAPK10 was downregulated at all 3 time points; however, significant difference (p<0.01) was noted only at 35 dpi. Moreover, the expression of gga-miR-222b-5p was upregulated; however, significant difference (p<0.01) was observed only at 28 and 35 dpi. A dual-luciferase reporter assay showed that MAPK10 is a direct target of gga-miR-222b-5p. This study suggests that gga-miR-222b-5p may target MAPK10 to promote the REV-SNV-induced tumorigenesis via the RLRs signaling pathway.
Go to article

Bibliography


Bi Y, Xu L, Qiu L, Wang S, Liu X, Zhang Y, Chen Y, Zhang Y, Xu Q, Chang G (2018) Reticuloendotheliosis virus inhi- bits the immune response acting on lymphocytes from peripheral blood of chicken. Fronti Physiol 9:4
Chun-zhi Z, Lei H, An-ling Z, Yan-chao F, Xiao Y, Guang-xiu W, Zhi-fan J, Pei-yu P, Qing-yu Z, Chun-sheng K (2010). MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radio-resistance by targeting PTEN. BMC Cancer 10: 1-10.
Dai Z, Ji J, Yan Y, Lin W, Li H, Chen F, Liu Y, Chen W, Bi Y, Xie Q (2015) Role of gga-miR-221 and gga-miR-222 during tumour for-mation in chickens infected by subgroup J avian leukosis virus. Viruses 7: 6538-6551.
Fiorucci G, Chiantore MV, Mangino G, Romeo G (2015) MicroRNAs in virus-induced tumorigenesis and IFN system. Cytokine Growth Factor Reviews 26: 183-194.
Gao C, Dang S, Zhai J, Zheng S (2020) Regulatory mechanism of microRNA-155 in chicken embryo fibroblasts in response to reticuloendo-theliosis virus infection. Vet Microbiol 242: 108610.
Gao S, Jiang H, Sun J, Diao Y, Tang Y, Hu J (2019a) Integrated analysis of miRNA and mRNA expression profiles in spleen of specific pathogen-free chicken infected with avian reticuloendotheliosis virus strain SNV. Int J Mol Sci 20: 1041.
Garofalo M, Quintavalle C, Romano G, M croce C, Condorelli G (2012) miR221/222 in cancer: their role in tumor progression and response to therapy. Curr Mol Med 12: 27-33.
Kunde S A, Rademacher N, Tzschach A, Wiedersberg E, Ullmann R, Kalscheuer V M, Shoichet S A (2013) Characterisation of de novo MAPK10/JNK3 truncation mutations associated with cognitive disorders in two unrelated patients. Hum Genet 132: 461-471.
Lee H, Kim K R, Cho N H, Hong S R, Jeong H, Kwon S Y, Park K H, An H J, Kim T H, Kim I (2014) MicroRNA expression profiling and Notch1 and Notch2 expression in minimal deviation adenocarcinoma of uterine cervix. World J Surg Oncol 12: 1-9.
Li H, Ji J, Xie Q, Shang H, Zhang H, Xin X, Chen F, Sun B, Xue C, Ma J (2012) Aberrant expression of liver microRNA in chickens in-fected with subgroup J avian leukosis virus. Virus Res 169: 268-271.
Sandford E E, Orr M, Balfanz E, Bowerman N, Li X, Zhou H, Johnson T J, Kariyawasam S, Liu P, Nolan L K (2011) Spleen transcriptome response to infection with avian pathogenic Escherichia coli in broiler chickens. BMC Genomics 12: 469.
Yao Y, Vasoya D, Kgosana L, Smith L P, Gao Y, Wang X, Watson M, Nair V (2017) Activation of gga-miR-155 by reticuloendotheliosis virus T strain and its contribution to transformation. J Gen Virol 98: 810.
Ying J, Li H, Cui Y, Wong A, Langford C, Tao Q (2006) Epigenetic disruption of two proapoptotic genes MAPK10/ /JNK3 and PTPN13/FAP-1 in multiple lymphomas and carcinomas through hypermethylation of a common bidirectional promoter. Leukemia 20: 1173-1175.
Yu Z, Gao X, Liu C, Lv X, Zheng S (2017) Analysis of microRNA expression profile in specific pathogen-free chickens in response to retic-uloendotheliosis virus infection. Appl Microbiol Biot 101: 2767-2777.
Go to article

Authors and Affiliations

H. Jiang
1 2 3
S. Gao
4
M. Mao
1 2 3
Y. Diao
1 2 3
Y. Tang
1 2 3
J. Hu
1 2 3

  1. College of Veterinary Medicine, Shandong Agricultural University, No.61 Daizong Street, Tai’an 271018, China
  2. Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No.61 Daizong Street, Tai’an 271018, China
  3. Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, No.61 Daizong Street, Tai’an 271018, China
  4. Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizi Shan Street, Wu’han 430070, China
Download PDF Download RIS Download Bibtex

Abstract

A novel avian orthoreovirus (N-ARV) variant characterized with obvious arthritis and synovial inflammation, was isolated from Shandong, China in May 2016. It caused chicken poor growth and enormous economic losses to the poultry industry of China. However, there are few effective methods for detecting the antibody levels of N-ARV. In this study, a viral structural protein σC was expressed using the prokaryotic expression vector pET32a (+). The target protein was obtained by inducing for 6 hours at an IPTG concentration of 0.6mM. The optimal dilution of the coating antigen and serum antibody were determined to be 1000 fold and 10 fold respectively. A specificity test showed that there was no positive reactivity between N-ARV and other pathogens, and when the positive serum was diluted 100 times detection results were still checkable. The repeatability of this method was determined by the inter assay and intra assay tests with variability ranging from 4.85% to 7.93%. In conclusion, this indirect enzyme linked immunosorbent assay (ELISA) will be useful for large-scale serological surveys and monitoring antibody levels in N-ARV infection.
Go to article

Bibliography

Adair BM, Burns K, McKillop ER (1987) Serological studies with reoviruses in chickens, turkeys and ducks. Comp Pathol 97:495-501.
Ayalew LE, Gupta A, Fricke J, Ahmed KA, Popowich S, Lockerbie B (2017) Phenotypic, genotypic and antigenic characterization of emerging avian reoviruses isolated from clinical cases of arthritis in broilers in saskatchewan. Scientific Reports 7: 3565.
Benavente J, Martinezcostas J (2007) Avian reovirus: structure and biology. Virus Res 123:105–119. Bodelón G, Labrada L, Martønez-Costas J (2001) The avian reovirus genome segment S1 is a functionally tricistronic gene that expresses One structural and two nonstructural proteins in infected cells. Virology 290:181-191.
Caterina, KM, Frasca S, Girshick T, Khan M (2004) Development of a multiplex pcr for detection of avian adenovirus, avian reovirus, infectious bursal disease virus, and chicken anemia virus. Molecular and Cellular Probes 18: 293-298.
Curtis PE, Al-Mufarrej SI, Jones RC, Morris J, Sutton PM (1992) Tenosynovitis in young pheasants associated with reovirus, staphylococci and environmental factors. Veterinary Record 131: 293.
Dandár E, Bálint Á, Kecskeméti S (2013) Detection and characterization of a divergent avian reovirus strain from a broiler chicken with central nervous system disease. Arch Virol. 158: 2583-2588.
Dutta SK , Pomeroy BS (1967) Isolation and characterization of an enterovirus from baby chicks having an enteric infection II. Physical and chemical characteristics and ultrastructure. Avian Dis 11: 9-15.
Fahey JE , Crawley JF (1954) Studies On Chronic Respiratory Disease Of Chickens II. Isolation of A Virus. Can J Comp Med Vet Sci 18: 13-21.
Guo K, Dormitorio TV, Ou SC Giambrone JJ (2011) Development of TaqMan real-time RT-PCR for detection of avian reoviruses. Virol Methods 177: 75-79.
Heggen-Peay CL, Qureshi MA, Edens FW (2002) Isolation of a reovirus from poult enteritis and mortality syndrome and its pathogenicity in turkey poults. Avian Dis 100: 102-105
Howell SH, Walker LL ( 1972) Synthesis of DNA in toluenetreated Chlamydomonas reinhardi (DNA replication-chloroplast DNA-cell cycle-electron microscopy). Proceedings of the National Academy of Sciences of the United States of America 69: 490-494.
Ide PR, Dewitt W (1979) Serological incidence of avian reovirus infection in broiler-breeders and progeny in Nova Scotia. Canadian Veterinary Journal La Revue Vétérinaire Canadienne 20: 348.
Jones RC, Kibenge F (1984) Reovirus-induced tenosynovitis in chickens: The effect of breed. Avian Pathol 13: 511-528.
Jones RC, Savage CE (1987) Effects of experimental immunosuppression on reovirus-induced tenosynovitis in light- -hybrid chickens. Avian Pathol 14: 51-58.
Lin FQ, Qi-Lin HU, Chen SY (2007) Diagnosis of Muscovy Duck Reovirus Disease by Semi-Nested RT-PCR. Journal of South China Agricultural University 16: 61-68.
Liu HJ, Giambrone JJ, Nielsen BL (1997) Molecular characterization of avian reoviruses using nested PCR and nucleotide sequence analysis. J Virol Methods 65: 159-167.
Liu Y, Wan W, Gao D ( 2016) Genetic characterization of novel fowl aviadenovirus 4 isolates from outbreaks of hepatitis-hydropericardium syndrome in broiler chickens in China. Emerg Microbes Infect 5: 117.
Marks M , Marks JL (2016) Viral arthritis. Clinical Medicine 1: 16-19. Mor SK, Sharafeldin TA, Porter RE (2014) Molecular characterization of L class genome segments of a newly isolated turkey arthritis reovirus. Infect Genet Evol 27: 193-201.
Mor SK, Sharafeldin TA, Porter RE (2013) Isolation and characterization of a turkey arthritis reovirus. Avian Dis 57: 97-103.
Noh JY, Lee DH, Lim TH, Lee J H, Day JM, Song CS (2018) Isolation and genomic characterization of a novel avian orthoreovirus strain in Korea, Arch Virol 163: 1-10.
Victor PT, Darko M, Tom I, Frank V, Faizal A (2018) Molecular characterization of emerging avian reovirus variants isolated from viral arthritis cases in western canada 2012-2017 based on partial sigma (σ)c gene. Virology 522: 138-146.
Palya V, Glávits R, Dobos-Kovács M, É Ivanics, Nagy, E, K Bányai (2003) Reovirus identified as cause of disease in young geese. Avian Pathol 32: 129-138.
Xie L, Xie Z, Wang S, Deng X, Xie Z (2020) Study of the activation of the pi3k/akt pathway by the motif of σa and σns proteins of avian reovirus. Innate Immunity 26: 4.
Rendón-Anaya M, Montero-Vargas JM, Saburido-Álvarez S, Vlasova A, Herrera-Estrella A (2017) Genomic history of the origin and domestication of common bean unveils its closest sister species. Genome Biology 18: 60.
Sharafeldin TA, Mor SK, Bekele AZ, Verma H, Noll SL, Goyal SM (2015) Experimentally induced lameness in turkeys inoculated with a newly emergent turkey reovirus. Veterinary Research 46: 11.
Shien JH, Yin HS , Lee LH (2000) An enzyme-linked immunosorbent assay for the detection of antibody to avian reovirus by using protein σ B as the coating antigen. Res Vet Sci. 65: 60
Wen L, Hwh B, Ming H, Long H, Hjlb C (2004) Avian reovirus σc protein induces apoptosis in cultured cells. Virology 321: 65-74.
Tang Y, Lu H (2015) Genomic characterization of a broiler reovirus field strain detected in pennsylvania. Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases 31: 177-182.
Tang Y, Lin L, Sebastian A, Lu H (2016) Detection and characterization of two co-infection variant strains of avian orthoreovirus (ARV) in young layer chickens using next-generation sequencing (NGS). Sci Rep 6: 24519.
Vasserman Y, Eliahoo D, Hemsani E (2004) The influence of reovirus sigma C protein diversity on vaccination efficiency. Avian Dis 47: 28-30
Vindevogel H, Meulemans G, Pastoret PP (1982) Reovirus infection in the pigeon. Ann Rech Vet Rinaires Ann Vet Res 13: 149.
Yun T, Chen H, Yu B (2015) Development and application of an indirect ELISA for the detection of antibodies to novel duck reovirus. Journal of Virological Methods 220: 55-59.
Go to article

Authors and Affiliations

H. Liu
1 2 3
ORCID: ORCID
Z. Wei
1 2 3
J. Yang
1 2 3
Y. Wang
1 2 3
ORCID: ORCID
J. Hu
1 2 3
Y. Tang
1 2 3
Y. Diao
1 2 3

  1. College of Veterinary Medicine, Shandong Agricultural University, No.61 Daizong Street, Tai’an 271018, China
  2. Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No.61 Daizong Street, Tai’an 271018, China
  3. Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, No.61 Daizong Street, Tai’an 271018, China

This page uses 'cookies'. Learn more