Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Achieving control of coating thickness in foundry moulds is needed in order to guarantee uniform properties of the mould but also to

achieve control of drying time. Since drying time of water based coatings is heavily dependent on the amount of water present in the

coating layer, a stable coating process is prerequisite for a stable drying process. In this study, we analyse the effect of different variables

on the coating layer properties. We start by considering four critical variables identified in a previous study such as sand compaction,

coating density, dipping time and gravity and then we add centre points to the original experimental plans to identify possible non-linear

effects and variation in process stability. Finally, we investigate the relation between coating penetration (a variable that is relatively

simple to measure in production) and other coating layer thickness properties (relevant for the drying process design). Correlations are

found and equations are provided. In particular it is found that water thickness can be directly correlated to penetration with a simple linear

equation and without the need to account for other variables.

Go to article

Authors and Affiliations

G.L. Di Muoio
N.S. Tiedje
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a numerical model for the horizontal continuous casting of cast iron (HCCCI). A computational three-dimensional (3D) steady-state, coupled with fluid flow and heat transfer simulation model was developed and validated against experimental results to study the shell thickness and solidification of ductile cast iron. The study introduces the influence of an air gap at the melt-mould interface, which has long been known to have a detrimental effect on the efficiency of the process. The effect of the length and thickness of the melt-mould air gaps (also referred to as top air gaps) on solidification and remelting of the solid strand is studied. Parametric studies on top air gaps suggested a substantial effect on the solid and eutectic area at the top-outlet end of the die when the length of air gas was varied. This study serves to create a foundational and working model with the overall objective of process optimisation and analyzing the effect of operating process input parameters on the shell thickness of the strand.
Go to article

Authors and Affiliations

A. Chawla
1
ORCID: ORCID
N.S. Tiedje
1
ORCID: ORCID
J. Spangenberg
1
ORCID: ORCID

  1. Technical University of Denmark, Denmark

This page uses 'cookies'. Learn more