Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Diabetes is characterized by high blood glucose level termed hyperglycemia affecting skeletal muscle structure and function by an unclear molecular mechanism. This study aimed to investigate the effect and underlying mechanism(s) of hyperglycemia on skeletal muscle both in vitro and in vivo. Treatment with hyperglycemic condition (25 mM) for 48 h significantly inhibited C2C12 myoblast proliferation detected by MTT assay whilst flow cytometry revealed an interruption of the cell cycle at subG1 and G2/M phases. An exposure to hyperglycemic condition significantly decreased the myosin heavy chain (MHC) protein expression in the differentiated myotube and tibialis anterior (TA) muscle of Wistar rats. In addition, the muscle cross-section area (MCA) of TA muscle in diabetic rats were significantly decreased compared to the non-diabetic control. Western blotting analysis of C2C12 myoblasts and differentiated myotubes revealed the increased expressions of cleaved-caspase-9 and cleaved-caspase-3, but not cleaved-caspase-8. Of note, these caspases in the TA muscles were not changed under hyperglycemic condition. Quantitative real-time polymerase chain reaction (qRT-PCR) of the hyperglycemic myoblasts and TA muscles revealed modulation of the gene expression of sirtuins (SIRTs). In C2C12 myoblasts, the expressions of SIRT1, SIRT2 and SIRT4 were upregulated whilst SIRT7 was downregulated. Meanwhile, the expressions of SIRT1, SIRT2 in TA muscles were upregulated whilst SIRT4 was downregulated. Taken together, this study showed that hyperglycemia induced cell cycle arrest and apoptosis in myoblasts, and protein degradation and atrophy in skeletal muscle most likely via modulation of SIRTs gene expression.
Go to article

Bibliography


Ahangarpour A, Oroojan AA, Khorsandi L, Kouchak M, Badavi M (2018) Antioxidant effect of myricitrin on hyperglycemia-induced oxida-tive stress in C2C12 cell. Cell Stress Chaperones 23: 773-781.

Arora A, Dey CS (2014) SIRT2 negatively regulates insulin resistance in C2C12 skeletal muscle cells. Biochim Biophys Acta 1842: 1372-1378.

Ban N, Ozawa Y, Inaba T, Miyake S, Watanabe M, Shinmura K, Tsubota K (2013) Light-dark condition regulates sirtuin mRNA levels in the retina. Exp Gerontol 48: 1212-1217.

Buranasin P, Mizutani K, Iwasaki K, Pawaputanon Na, Mahasarakham C, Kido D, Takeda K, Izumi Y (2018) High glucose-induced oxidative stress impairs proliferation and migration of human gingival fibroblasts. PLoS One 13: e0201855.

Chang HC, Guarente L (2014) SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab 25: 138-145.

Chao SC, Chen YJ, Huang KH, Kuo KL, Yang TH, Huang KY, Wang CC, Tang CH, Yang RS, Liu SH (2017) Induction of sirtuin-1 sig-naling by resveratrol induces human chondrosarcoma cell apoptosis and exhibits antitumor activity. Sci Rep 7: 3180.

Chen Y, Fu LL, Wen X, Wang XY, Liu J, Cheng Y, Huang J (2014) Sirtuin-3 (SIRT3), a therapeutic target with oncogenic and tu-mor-suppressive function in cancer. Cell Death Dis 5: e1047.

Doktorova TY, Ellinger-Ziegelbauer H, Vinken M, Vanhaecke T, van Delft J, Kleinjans J, Ahr HJ, Rogiers V (2012) Comparison of geno-toxicant-modified transcriptomic responses in conventional and epigenetically stabilized primary rat hepatocytes with in vivo rat liver data. Arch Toxicol 86: 1703-1715.

Felice F, Lucchesi D, di Stefano R, Barsotti MC, Storti E, Penno G, Balbarini A, Prato SD, Pucci L (2010) Oxidative stress in response to high glucose levels in endothelial cells and in endothelial progenitor cells: evidence for differential glutathione peroxidase-1 expression. Micro-vasc Res 80: 332-338.

Galban VD, Evangelista EA, Migliorini RH, do Carmo Kettelhut I (2001) Role of ubiquitin-proteasome-dependent proteolytic process in degradation of muscle protein from diabetic rabbits. Mol Cell Biochem 225: 35-41.

Hirata Y, Nomura K, Senga Y, Okada Y, Kobayashi K, Okamoto S, Minokoshi Y, Imamura M, Takeda S, Hosooka T, Ogawa W (2019) Hyperglycemia induces skeletal muscle atrophy via a WWP1/KLF15 axis. JCI Insight 4: e124952.

Linxi Z, Guirong Z, Xue W, Gang S (2015) The Effect of high glucose on proliferation and expression of correlation factors of MG63 osteo-blasts. J Hard Tissue Biol 24: 143-146.

Liu L, Arun A, Ellis L, Peritore C, Donmez G (2014) SIRT2 enhances 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced nigrostriatal damage via apoptotic pathway. Front Aging Neurosci 6: 184.

Liu M, Wilk SA, Wang A, Zhou L, Wang RH, Ogawa W, Deng C, Dong LQ, Liu F (2010) Resveratrol inhibits mTOR signaling by promot-ing the interaction between mTOR and DEPTOR. J Biol Chem 285: 36387-36394.

Luo M, Liu Z, Hao H, Lu T, Chen M, Lei M, Verfaillie CM, Liu Z (2012) High glucose facilitates cell cycle arrest of rat bone marrow mul-tipotent adult progenitor cells through transforming growth factor-β1 and extracellular signal-regulated kinase 1/2 signalling without changing Oct4 expression. Clin Exp Pharmacol Physiol 39: 843-851.

Luo W, Ai L, Wang BF, Zhou Y (2019) High glucose inhibits myogenesis and induces insulin resistance by down-regulating AKT signaling. Biomed Pharmacother 120: 109498.

Orimo M, Minamino T, Miyauchi H, Tateno K, Okada S, Moriya J, Komuro I (2009) Protective role of SIRT1 in diabetic vascular dysfunc-tion. Arterioscler Thromb Vasc Biol 29: 889-894.

Park SH, Choi HJ, Lee JH, Woo CH, Kim JH, Han HJ (2001) High glucose inhibits renal proximal tubule cell proliferation and involves PKC, oxidative stress, and TGF-β1. Kidney Int 59: 1695-1705.

Porreca I, D’Angelo F, De Franceschi L, Mattè A, Ceccarelli M, Iolascon A, Zamò A, Russo F, Ravo M, Tarallo R, Scarfò M, Weisz A, De Felice M, Mallardo M, Ambrosino C (2016) Pesticide toxicogenomics across scales: in vitro transcriptome predicts mechanisms and outcomes of exposure in vivo. Sci Rep 6: 38131.

Quinn ME, Goh Q, Kurosaka M, Gamage DG, Petrany MJ, Prasad V, Millay DP (2017) Myomerger induces fusion of non-fusogenic cells and is required for skeletal muscle development. Nat Commun 8: 15665.

Rathbone CR, Booth FW, Lees SJ (2009) Sirt1 increases skeletal muscle precursor cell proliferation. Eur J Cell Biol 88: 35-44.

Reddy SS, Shruthi K, Joy D, Reddy GB (2019) 4-PBA prevents diabetic muscle atrophy in rats by modulating ER stress response and ubiq-uitin-proteasome system. Chem Biol Interact 306: 70-77.

Samant SA, Kanwal A, Pillai VB, Bao R, Gupta MP (2017) The histone deacetylase SIRT6 blocks myostatin expression and development of muscle atrophy. Sci Rep 7: 11877.

Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117: 399-412.

Schartner E, Sabbir MG, Saleh A, Silva RV, Chowdhury SR, Smith DR, Fernyhough P (2018) High glucose concentration suppresses a SIRT2 regulated pathway that enhances neurite outgrowth in cultured adult sensory neurons. Exp Neurol 309: 134-147.

Sharples AP, Hughes DC, Deane CS, Saini A, Selman C, Stewart CE (2015) Longevity and skeletal muscle mass: the role of IGF signalling, the sirtuins, dietary restriction and protein intake. Aging Cell 14: 511-523.

Shi JX, Wang QJ, Li H, Huang Q (2017) SIRT4 overexpression protects against diabetic nephropathy by inhibiting podocyte apoptosis. Exp Ther Med 13: 342-348.

Surinlert P, Kongthong N, Watthanard M, Sae-lao T, Sookbangnop P, Pholpramool C, Tipbunjong C (2020) Styrene oxide caused cell cycle arrest and abolished myogenic differentiation of C2C12 myoblasts. J Toxicol 2020: 1807126.

Vakhrusheva O, Smolka C, Gajawada P, Kostin S, Boettger T, Kubin T, Braun T. Bober E (2008) Sirt7 increases stress resistance of cardio-myocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res 102: 703-710.

Verdin E, Hirschey MD, Finley LW, Haigis MC (2010) Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci 35: 669-675.

Wang F, Nguyen M, Qin XF, Tong Q (2007) SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 6: 505–514.

Wang S, Wang J, Zhao A, Li J (2017) SIRT1 activation inhibits hyperglycemia-induced apoptosis by reducing oxidative stress and mitochon-drial dysfunction in human endothelial cells. Mol Med Rep 16: 3331-3338.

Wang X, Hu Z, Hu J, Du J, Mitch WE (2006) Insulin resistance accelerates muscle protein degradation: activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling. Endocrinology 147: 4160-4168.

Wronska A, Lawniczak A, Wierzbicki PM, Kmiec Z (2016) Age-related changes in sirtuin 7 expression in calorie-restricted and refed rats. Gerontology 62: 304-310.

Zhang HH, Ma XJ, Wu LN, Zhao YY, Zhang PY, Zhang YH, Shao MW, Liu F, Li F, Qin GJ (2015) SIRT1 attenuates high glucose-induced insulin resistance via reducing mitochondrial dysfunction in skeletal muscle cells. Exp Biol Med (Maywood) 240: 557-565.
Go to article

Authors and Affiliations

P. Surinlert
1
T. Thitiphatphuvanon
2
W. Khimmaktong
3
C. Pholpramool
4
C. Tipbunjong
3 5

  1. Chulabhorn International College of Medicine, Thammasat University, Pathum-Thani 12120, Thailand
  2. Faculty of Medicine, Siam University, Bangkok 10160, Thailand
  3. Department of Anatomy, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
  4. Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
  5. Gut Biology and Microbiota Research Unit, Prince of Songkla University, Songkhla 90110, Thailand

This page uses 'cookies'. Learn more