Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the last decade a growing interest was observed in low-cost adsorbents for heavy metal ions. Clinoptilolite is a mineral sorbent extracted in Poland that is used to remove heavy metal ions from diluted solutions. The experiments in this study were carried out in a laboratory column for multicomponent water solutions of heavy metal ions, i.e. Cu(II), Zn(II) and Ni(II). A mathematical model to calculate the metals' concentration of water solution at the column outlet and the concentration of adsorbed substances in the adsorbent was proposed. It enables determination of breakthrough curves for different process conditions and column dimensions. The model of process dynamics in the column took into account the specificity of sorption described by the Elovich equation (for chemical sorption and ion exchange). Identification of the column dynamics consisted in finding model coefficients β, KE and Deff and comparing the calculated values with experimental data. Searching for coefficients which identify the column operation can involve the use of optimisation methods to find the area of feasible solutions in order to obtain a global extremum. For that purpose our own procedure of genetic algorithm is applied in the study.

Go to article

Authors and Affiliations

Elwira Tomczak
Władysław Kamiński
Download PDF Download RIS Download Bibtex

Abstract

This paper discusses the adsorption of Direct Orange 26 azo dye on sunflower husk - an agricultural waste product. During the study, sorption kinetics and equilibrium as well as sorption capacity of the husk were investigated. The adsorption kinetics was analyzed using pseudo-first and pseudo-second order equations, which indicated a chemical sorption mechanism. The sorption equilibrium was approximated with the two-parameter Freundlich and Langmuir equations and the three-parameter Redlich-Peterson equation. The main experiments were carried out in a laboratory adsorption column under different process conditions. Experimental data were interpreted with the Thomas model, based on the volumetric flow rate, initial composition of the feed solution and mass of the adsorbent. The results of modeling the adsorption equilibrium, adsorption kinetics and adsorption dynamics were evaluated statistically.

Go to article

Authors and Affiliations

Elwira Tomczak
Paweł Tosik
Download PDF Download RIS Download Bibtex

Abstract

This paper presents ultrafiltration results of model BSA (bovine serum albumin) and MB (myoglobin) solutions prepared with or without NaCl addition. The protein concentrations in the solutions were equal to 0.05 gdm􀀀3 for MB and 0.5 gdm􀀀3 for BSA. The ultrafiltration tests were performed using a laboratory scale unit equipped with 90 mm ceramic disc membranes with a filtration area of 5:610􀀀3 m2 and cut-off of 50 or 150 kDa. The tests were run under constant process conditions, i.e. a cross flow volume (CFV) of 5 ms􀀀1, transmembrane pressure (TMP) of 0.2 MPa, temperature of 20 ◦C and NaCl concentration of 0 or 10 wt%. The installation worked in a semi-open mode with a continuous permeate discharge and retentate recycle. The performance of the membranes was measured with the permeate volumetric flow rate, JV (m3m􀀀2s􀀀1) while their selectivity was determined by the protein rejection, R. The paper evaluates and discusses the protein rejection mechanisms as well as the influence of the membrane cut-off and sodium chloride concentration in the feed on the flux decline during the ultrafiltration of BSA and MB. Moreover, it provides an analysis of the first fouling phase by applying usual filtration laws.
Go to article

Authors and Affiliations

Konrad Ćwirko
Elwira Tomczak
Daniela Szaniawska

This page uses 'cookies'. Learn more