Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The application of renewable energy sources poses the problems connected with output volatility. In order to decrease this effect the energy storage technologies can be applied, particularly fuel cells connected with hydrogen storage. In this paper the application of SOFC system for a household in Poland is proposed. Economic and technical analysis is performed. It was found that the proposed installation is profitable after 25 years of operation when compared with conventional solution - heat pumps and gas-fired boilers.

Go to article

Authors and Affiliations

Maciej Cholewiński
Łukasz Tomków
Download PDF Download RIS Download Bibtex

Abstract

Safety and operation efficiency of the particle accelerators strongly depend on the quality of the supplied electric current and is affected by the electric properties of all elements of the circuit. In this paper the capacitance of the superconducting bus-bars applied in the cryogenic by-pass line for the SIS100 particle accelerator at FAIR is analysed. The unit capacitance of the bus-bars is calculated numerically and found experimentally. A 2D numerical model of a cross-section of the cable is applied. The capacitance is found with three methods. The stored energy, electric displacement field and charge gathered on the surfaces of the device are calculated and analysed. The obtained values are consistent. Experimental measurements are performed using the resonance method. The measuring system is undamped using a negative conductance converter. Small discrepancies are ob- served between numerical and experimental results. The obtained values are within the requirements of the accelerator design.

Go to article

Authors and Affiliations

Łukasz Tomków
Stanisław Trojanowski
Marian Ciszek
Maciej Chorowski
Download PDF Download RIS Download Bibtex

Abstract

Quality of electric current delivered to the magnets of a particle accelerator is essential for safety and reliability of its operation. Even small discrepancies strongly affect the properties of particle beams. One of the sources of the disturbances is the appearance of induced currents caused by the electromagnetic interactions between the elements of the machine. In this paper the calculations of induced currents in by-pass lines of a SIS100 particle accelerator are presented. In order to find the values of the currents the self-inductances and mutual inductances of the by-pass lines are found. Due to the complex geometry of the line, especially of Ω-shaped dilatations, the numerical approach was employed. The calculations show that the size of induced currents increases with the distance between the cables in an individual bus-bar. The maximum discrepancy of the magnetic field in a dipole magnet is found to be 7.7 μT. The decrease of distance between the cables allows one to obtain a discrepancy of 1.2 μT.

Go to article

Authors and Affiliations

Łukasz Tomków
Stanisław Trojanowski
Marian Ciszek
Maciej Chorowski
Download PDF Download RIS Download Bibtex

Abstract

Sections of the superconducting magnets of the SIS100 particle accelerator, under construction at the Facility for Antiproton and Ion Research (FAIR), the Society for Heavy Ion Research (GSI), Darmstadt, are going to be connected with the by-pass lines. Each line will be used to transfer a two-phase helium flow and an electric current. The electric current will be carried by four pairs of superconducting Nuclotron-type cables. Fast-ramping currents are expected to cause the generation of heat within the cables. In this work the results of a numerical thermal analysis of a bus-bar are presented. The amount of heat transferred from the environment was found based on geometric dimensions of the line and applied insulation. The amount of hysteresis loss, generated in the cable during the operation under most demanding regime of the operation of the accelerator, was calculated. According to the amount of the generated heat, the amount of the hysteresis loss is low in relation to the heat generated in the superconducting magnets. Also it was found that the cable used in the line still retains a large margin of current-carrying capacity.

Go to article

Authors and Affiliations

Łukasz Tomków
Maciej Cholewiński
ORCID: ORCID
Marian Ciszek
Maciej Chorowski

This page uses 'cookies'. Learn more