Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Results of complex mathematical and computer simulation of gear hobbing are given. A systematic approach to research allowed for the development of simulation models and sequencing of all aspects of this complex process. Based on the modeling of non-deformable chips, a new analytical method for analyzing hobbing has been proposed. The shear, friction and cutting forces at the level of certain teeth and edges in the active space of the cutter are analyzed depending on the cut thickness, cross-sectional area, intensity of plastic deformation and length of contact with the workpiece has been developed. The results of computer simulations made it possible to evaluate the load distribution along the cutting edge and to predict the wear resistance and durability of the hob cutter, as well as to develop measures and recommendations for both the tool design and the technology of hobbing in general. Changing the shape of cutting surface, or the design of the tooth, can facilitate separation of the cutting process between the head and leading and trailing edges. In this way, more efficient hobbing conditions can be achieved and the life of the hob can be extended.
Go to article

Bibliography

[1] B. Karpuschewski, H.J. Knoche, M. Hipke, and M. Beutner. High performance gear hobbing with powder-metallurgical high-speed-steel. In Procedia CIRP, 1:196–201, 2012. doi: 10.1016/j.procir.2012.04.034.
[2] B. Karpuschewski, M. Beutner, M. Köchig, and C. Härtling. Influence of the tool profile on the wear behaviour in gear hobbing. CIRP Journal of Manufacturing Science and Technology, 18:128–134, 2018. doi: 10.1016/j.cirpj.2016.11.002.
[3] K.-D. Bouzakis, O. Friderikos, I. Mirisidis, and I. Tsiafis. Geometry and cutting forces in gear hobbing by a FEM-based simulation of the cutting process. In Proceedings of the 8th CIRP International Workshop on Modeling of Machining Operations, 10-11 May, Chemnitz, 2005.
[4] F. Klocke, C. Gorgels, R. Schalaster, and A. Stuckenberg. An innovative way of designing gear hobbing processes. Gear Technology, May:48–53, 2012.
[5] K.D. Bouzakis, S. Kombogiannis, A. Antoniadis, and N. Vidakis. Gear hobbing cutting process simulation and tool wear prediction models. Journal of Manufacturing Science and Engineering, 124(1):42–51, 2002. doi: 10.1115/1.1430236.
[6] K.D. Bouzakis, E. Lili E, N. Michailidis, and O. Friderikos. Manufacturing cylindrical gears by generating cutting processes: a critical synthesis of analysis methods. CIRP Annals, 57(2):676–696, 2008. doi: 10.1016/j.cirp.2008.09.001.
[7] G. Skordaris, K.D. Bouzakis, T. Kotsanis, P. Charalampous, E. Bouzakis, O. Lemmer, and S. Bolz. Film thickness effect on mechanical properties and milling performance of nano-structured multilayer PVD coated tools. Surface and Coatings Technology, 307, Part A:452–460, 2016, doi: 10.1016/j.surfcoat.2016.09.026.
[8] K.D. Bouzakis, S. Kombogiannis, A. Antoniadis, and N. Vidakis. Modeling of gear hobbing. Cutting simulation, tool wear prediction models and computer supported experimental-analytical determination of the hob life-time. In Proceeding of ASME International Mechanical Engineering Congress and Exposition, volume 1, pages 261–269, Shannon, 14–19 November, 1999.
[9] N. Sabkhi, A. Moufki, M. Nouari, C. Pelaingre, and C. Barlier. Prediction of the hobbing cutting forces from a thermomechanical modeling of orthogonal cutting operation. Journal of Manufacturing Processes, 23:1–12, 2016. doi: 10.1016/j.jmapro.2016.05.002.
[10] V. Dimitriou and A. Antoniadis. CAD-based simulation of the hobbing process for the manufacturing of spur and helical gears. The International Journal of Advanced Manufacturing Technology, 41(3-4):347–357, 2009. doi: 10.1007/s00170-008-1465-x.
[11] C. Claudin and J. Rech. Effects of the edge preparation on the tool life in gear hobbing. In Proceedings of the 3rd International Conference on Manufacturing Engineering (ICMEN), pages 57-70, Chalkidiki, Greece, 1-3 October 2008.
[12] J. Rech. Influence of cutting edge preparation on the wear resistance in high speed dry gear hobbing. Wear, 261(5-6):505–512, 2006. doi: 10.1016/j.wear.2005.12.007.
[13] C. Claudin and J. Rech. Development of a new rapid characterization method of hob’s wear resistance in gear manufacturing – Application to the evaluation of various cutting edge preparations in high speed dry gear hobbing. Journal of Materials Processing Technology, 209(11):5152–5160, 2009. doi: 10.1016/j.jmatprotec.2009.02.014.
[14] B. Hoffmeister. Über den Verschleiß am Wälzfräser (About wear on the hob). D.Sc. Thesis, RWTH Aachen, Germany, 1970 (in German).
[15] V.P. Astakhov. Metal Cutting Mechanics. CRC Press, 1999.
[16] P. Gutmann. Zerspankraftberechnung beim Waelzfraesen (Calculation of the cutting force for hobbing). Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 1988 (in German).
[17] I. Hrytsay, V.Stupnytskyy, and V. Topchii. Improved method of gear hobbing computer aided simulation. Archive of Mechanical Engineering, 66(4):475–494, 2019. doi: 10.24425/ame.2019.131358.
[18] V. Stupnytskyy and I. Hrytsay. Computer-aided conception for planning and researching of the functional-oriented manufacturing process. In: Tonkonogyi V. et al. (eds) Advanced Manufacturing Processes. InterPartner-2019. Lecture Notes in Mechanical Engineering, pages 309–320, 2020. doi: 10.1007/978-3-030-40724-7_32.
[19] I. Hrytsay and V. Stupnytskyy. Advanced computerized simulation and analysis of dynamic processes during the gear hobbing. In: Tonkonogyi V. et al. (eds) Advanced Manufacturing Processes. InterPartner-2019. Lecture Notes in Mechanical Engineering, pages 85–97, 2019. doi: 10.1007/978-3-030-40724-7_9.
[20] S.S. Silin. Similarity Methods in Metal Cutting, Mashinostroenie, Moscow, 1979. (in Russian).
[21] S.P. Radzevich. Gear Cutting Tools. Science and Engineering. CRC Press, 2017.
Go to article

Authors and Affiliations

Ihor Hrytsay
1
ORCID: ORCID
Vadym Stupnytskyy
1
ORCID: ORCID
Vladyslav Topchi
1
ORCID: ORCID

  1. Lviv Polytechnic National University, Lviv, Ukraine

This page uses 'cookies'. Learn more