Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The methane hazard is one of the most dangerous phenomena in hard coal mining. In a certain range of concentrations, methane is flammable and explosive. Therefore, in order to maintain the continuity of the production process and the safety of work for the crew, various measures are taken to prevent these concentration levels from being exceeded. A significant role in this process is played by the forecasting of methane concentrations in mine headings. This very problem has been the focus of the present article. Based on discrete measurements of methane concentration in mine headings and ventilation parameters, the distribution of methane concentration levels in these headings was forecasted. This process was performed on the basis of model-based tests using the Computational Fluid Dynamics (CFD). The methodology adopted was used to develop a structural model of the region under analysis, for which boundary conditions were adopted on the basis of the measurements results in real-world conditions. The analyses conducted helped to specify the distributions of methane concentrations in the region at hand and determine the anticipated future values of these concentrations. The results obtained from model-based tests were compared with the results of the measurements in realworld conditions. The methodology using the CFD and the results of the tests offer extensive possibilities of their application for effective diagnosis and forecasting of the methane hazard in mine headings.

Go to article

Authors and Affiliations

Jarosław Brodny
Magdalena Tutak
Download PDF Download RIS Download Bibtex

Abstract

Abstract Underground extraction of coal is characterized by high variability of mining and geological conditions in which it is conducted. Despite ever more effective methods and tools, used to identify the factors influencing this process, mining machinery, used in mining underground, work in difficult and not always foreseeable conditions, which means that these machines should be very universal and reliable. Additionally, a big competition, occurring on the coal market, causes that it is necessary to take action in order to reduce the cost of its production, e.g. by increasing the efficiency of utilization machines. To meet this objective it should be pro-ceed with analysis presented in this paper. The analysis concerns to availability of utilization selected mining machinery, conducted using the model of OEE, which is a tool for quantitative estimate strategy TPM. In this article we considered the machines being part of the mechanized longwall complex and the basis of analysis was the data recording by the industrial automation system. Using this data set we evaluated the availability of studied machines and the structure of registered breaks in their work. The results should be an important source of information for maintenance staff and management of mining plants, needed to improve the economic efficiency of underground mining.
Go to article

Authors and Affiliations

Jarosław Brodny
Sara Alszer
Jolanta Krystek
Magdalena Tutak

This page uses 'cookies'. Learn more