Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Effects of charge composition on microstructure, mechanical and fatigue properties of nodular cast irons have been studied. For experiments, five melts of nodular cast iron were used – three types of unalloyed nodular cast irons (with different ratio of steel and pig iron in a charge and different additives for regulation of the chemical composition) and two types of alloyed nodular cast irons (SiMo- and SiCu- nodular cast iron). The microstructure of the specimens was evaluated according to a norm and by automatic image analysis. The mechanical properties were investigated by the tensile test, impact bending test and Brinell hardness test. The fatigue tests were carried out at sinusoidal cyclic push-pull loading at ambient temperature. The best mechanical properties were reached in the nodular cast iron alloyed by Si and Cu, what is related to its microstructure.

Go to article

Authors and Affiliations

A. Vaško
J. Belan
E. Tillová
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper is to evaluate the fatigue resistance of austenitic nodular cast iron and to compare it with other types of nodular cast irons. The austenitic nodular cast iron, used for the experiments, was alloyed by 13% nickel and 7% manganese (EN-GJSA-XNiMn13-7) to obtain an austenitic matrix. The microstructure was studied using light metallographic microscopy. Mechanical properties were investigated by tensile test, impact bending test and Brinell hardness test. Fatigue tests were carried out at sinusoidal cyclic push-pull loading at ambient temperature. The results of fatigue tests were compared with the fatigue properties of ferrite-pearlitic nodular cast iron and pearlite-ferritic nodular cast iron. Experimental results show that NiMn-type of austenitic nodular cast iron has lower tensile strength and hardness, but higher elongation and absorbed energy than the compared types of nodular cast iron. However, austenitic nodular cast iron has lower fatigue limit.
Go to article

Authors and Affiliations

A. Vaško
1
ORCID: ORCID
M. Uhríčik
1
ORCID: ORCID
V. Kaňa
2
ORCID: ORCID

  1. University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering, Žilina, Slovakia
  2. Brno University of Technology, Faculty of Mechanical Engineering, Department of Foundry Engineering, Brno, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

Progress in the industry is accompanied by the development of new materials and more efficient technological production processes. At present, additive production is becoming very attractive in all industries (research, development, production), which brings a number of advantages compared to subtractive methods (customization, production speed, control of material properties by users, etc.). The main advantage of 3D printing is the controlled deposition of material in defined places. Instead of demanding manual labour, fully automated production via computers leads to the manufacturing of complex components from materials whose production in conventional ways would be problematic or even impossible. Because these are new technologies, the main direction of research at present is to identify the basic physical properties of these materials under different types of loading.
The main goal of this article is to observe the dependence of the behaviour of the extruded material (thermoplastic reinforced with chopped carbon fibre) on the printing parameters (thickness of the lamina, the orientation of the fibres of the printed material, etc.). Based on published scientific works, it appears that these settings have a significant impact on the achieved physical properties. This is the reason why the authors decided to analyze the influence of these parameters on the basis of processed data from experimental measurements of mechanical properties in the MATLAB program. As this is FFF printing, an essential condition is to identify and specify the directional dependence of the behavior of the printed material. This physical phenomenon is a necessary condition for gradual knowledge for the purposes of a subsequent mathematical description of the material properties. According to the authors, for the purposes of modeling these materials in FEM-based programs, it is essential to define the directional dependence in the plane of the lamina.
Go to article

Authors and Affiliations

J. Majko
1
ORCID: ORCID
M. Handrik
1
ORCID: ORCID
M. Vaško
1
ORCID: ORCID
M. Sága
1
ORCID: ORCID
P. Kopas
1
ORCID: ORCID
F. Dorčiak
1
ORCID: ORCID
A. Sapietová
1
ORCID: ORCID

  1. University of Žilina, Faculty of Mechanical Engineering, Department of Applied Mechanics, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic

This page uses 'cookies'. Learn more