Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper explores the parametric appraisal and machining performance optimization during drilling of polymer nanocomposites reinforced by graphene oxide/carbon fiber. The consequences of drilling parameters like cutting velocity, feed, and weight % of graphene oxide on machining responses, namely surface roughness, thrust force, torque, delamination (In/Out) has been investigated. An integrated approach of a Combined Quality Loss concept, Weighted Principal Component Analysis (WPCA), and Taguchi theory is proposed for the evaluation of drilling efficiency. Response surface methodology was employed for drilling of samples using the titanium aluminum nitride tool. WPCA is used for aggregation of multi-response into a single objective function. Analysis of variance reveals that cutting velocity is the most influential factor trailed by feed and weight % of graphene oxide. The proposed approach predicts the outcomes of the developed model for an optimal set of parameters. It has been validated by a confirmatory test, which shows a satisfactory agreement with the actual data. The lower feed plays a vital role in surface finishing. At lower feed, the development of the defect and cracks are found less with an improved surface finish. The proposed module demonstrates the feasibility of controlling quality and productivity factors.

Go to article

Bibliography

[1] Y.A. Roy, K. Gobivel, K.S.V Sekar, and S.S. Kumar. Impact of cutting forces and chip microstructure in high speed machining of carbon fiber – Epoxy composite tube. Archives of Metallurgy and Materials, 62(3):1771–1777, 2017. doi: 10.1515/amm-2017-0269.
[2] R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, and A.K. Bhowmick. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Progress in Polymer Science, 36(5):638–670, 2011. doi: 10.1016/j.progpolymsci.2010.11.003.
[3] P.F. Mayuet, F. Girot, A. Lamíkiz, S.R. Fernández-Vidal, J. Salguero, and M. Marcos. SOM/SEM based characterization of internal delaminations of CFRP samples machined by AWJM. Procedia Engineering, 132:693–700, 2015. doi: 10.1016/j.proeng.2015.12.549.
[4] A. Caggiano. Machining of fibre reinforced plastic composite materials. Materials, 11(3):442, 2018. doi: 10.3390/ma11030442.
[5] V. Sonkar, K. Abhishek, S. Datta, and S.S. Mahapatra. Multi-objective optimization in drilling of GFRP composites: A degree of similarity approach. Procedia Materials Science, 6:538–543, 2014. doi: 10.1016/j.mspro.2014.07.068.
[6] P. Kuppan, A. Rajadurai, and S. Narayanan. Influence of EDM process parameters in deep hole drilling of Inconel 718. The International Journal of Advanced Manufacturing Technology, 38(1–2):74–84, 2008. doi: 10.1007/s00170-007-1084-y.
[7] K. Abhishek, S. Datta, and S.S. Mahapatra. Multi-objective optimization in drilling of CFRP (polyester) composites: Application of a fuzzy embedded harmony search (HS) algorithm. Measurement, 77:222–239, 2016. doi: 10.1016/j.measurement.2015.09.015.
[8] B.C. Routara, S.D. Mohanty, S. Datta, A. Bandyopadhyay, and S.S. Mahapatra. Combined quality loss (CQL) concept in WPCA-based Taguchi philosophy for optimization of multiple surface quality characteristics of UNS C34000 brass in cylindrical grinding. The International Journal of Advanced Manufacturing Technology, 51(1–4):135–143, 2010. doi: 10.1007/s00170-010-2599-1.
[9] M.K. Das, K. Kumar, T.K. Barman, and P. Sahoo. Optimization of MRR and surface roughness in PAC of EN 31 steel using weighted principal component analysis. Procedia Technology, 14:211–218, 2014. doi: 10.1016/j.protcy.2014.08.028.
[10] S. Grieu, A. Traoré, M. Polit, and J. Colprim. Prediction of parameters characterizing the state of a pollution removal biologic process. Engineering Applications of Artificial Intelligence, 18(5):559–573, 2005. doi: 10.1016/j.engappai.2004.11.008.
[11] S.D. Lahane, M.K. Rodge, and S.B. Sharma. Multi-response optimization of wire-EDM process using principal component analysis. IOSR Journal of Engineering, 2(8):38–47, 2012. doi: 10.9790/3021-02833847.
[12] R. Ramanujam, K. Venkatesan, V. Saxena, R. Pandey, T. Harsha, and G. Kumar. Optimization of machining parameters using fuzzy based principal component analysis during dry turning operation of inconel 625 – A hybrid approach. Procedia Engineering, 97:668–676, 2014. doi: 10.1016/j.proeng.2014.12.296.
[13] H. Yang, R. Luo, S. Han, and M. Li. Effect of the ratio of graphite/pitch coke on the mechanical and tribological properties of copper-carbon composites. Wear, 268(11–12):1337–1341, 2010. doi: 10.1016/j.wear.2010.02.007.
[14] R.K. Verma, P.K. Pal, and B.C. Kandpal. Machining performance optimization in drilling of GFRP composites: A utility theory (UT) based approach. In: Proceedings of 2016 International Conference on Control, Computing, Communication and Materials, pages 1–5, Allahbad, India, 21-22 Oct. 2016. doi: 10.1109/ICCCCM.2016.7918255.
[15] K. Palanikumar, J.C. Rubio, A. Abrão, A. Esteves, and J.P. Davim. Statistical analysis of delamination in drilling Glass Fiber-Reinforced Plastics (GFRP). Journal of Reinforced Plastics and Composites, 27(15):1615–1623, 2008. doi: 10.1177/0731684407083012.
[16] P.E. Faria, J.C. Campos Rubio, A.M. Abrão, and J.P. Davim. Dimensional and geometric deviations induced by drilling of polymeric composite. Journal of Reinforced Plastics and Composites, 28(19):2353–2363, 2009. doi: 10.1177/0731684408092067.
[17] V.N. Gaitonde, S.R. Karnik, J.C.C. Rubio, W. de Oliveira Leite, and J.P. Davim. Experimental studies on hole quality and machinability characteristics in drilling of unreinforced and reinforced polyamides. Journal of Composite Materials, 48(1):21–36, 2014. doi: 10.1177/0021998312467552.
[18] Niharika, B.P. Agrawal, I.A. Khan, and Z.A. Khan. Effects of cutting parameters on quality of surface produced by machining of titanium alloy and their optimization. Archive of Mechanical Engineering, 63(4):531–548, 2016. doi: 10.1515/meceng-2016-0030.
[19] S. Chakraborty and P.P. Das. Fuzzy modeling and parametric analysis of non-traditional machining processes. Management and Production Engineering Review, 10(3):111–123, 2019. doi: 10.24425/mper.2019.130504.
[20] S. Prabhu and B.K. Vinayagam. Multiresponse optimization of EDM process with nanofluids using TOPSIS method and Genetic Algorithm. Archive of Mechanical Engineering, 63(1):45–71, 2016. doi: 10.1515/meceng-2016-0003.
[21] D. Palanisamy and P. Senthil. Optimization on turning parameters of 15-5PH stainless steel using taguchi based grey approach and TOPSIS. Archive of Mechanical Engineering, 63(3):397–412, 2016. doi: 10.1515/meceng-2016-0023.
[22] M.S. Węglowski. Experimental study and response surface methodology for investigation of FSP process. Archive of Mechanical Engineering, 61(4):539–552, 2014. doi: 10.2478/meceng-2014-0031.
[23] H. Majumder, T.R. Paul, V. Dey, P. Dutta, and A. Saha. Use of PCA-grey analysis and RSM to model cutting time and surface finish of Inconel 800 during wire electro discharge cutting. Measurement, 107:19–30, 2017. doi: 10.1016/j.measurement.2017.05.007.
[24] P.K. Kharwar and R.K. Verma. Grey embedded in artificial neural network (ANN) based on hybrid optimization approach in machining of GFRP epoxy composites. FME Transactions, 47(3):641–648, 2019. doi: 10.5937/fmet1903641P.
[25] R. Arun Ramnath, P.R. Thyla, N. Mahendra Kumar, and S. Aravind. Optimization of machining parameters of composites using multi-attribute decision-making techniques: A review. Journal of Reinforced Plastics and Composites, 37(2):77–89, 2018. doi: 10.1177/0731684417732840.
[26] K. Żak. Cutting mechanics and surface finish for turning with differently shaped CBN tools. Archive of Mechanical Engineering, 64(3):347–357, 2017. doi: 10.1515/meceng-2017-0021.
[27] R. Bielawski, M. Kowalik, K. Suprynowicz, W. Rządkowski, and P. Pyrzanowski. Experimental study on the riveted joints in Glass Fibre Reinforced Plastics (GFRP). Archive of Mechanical Engineering, 64(3):301–313, 2017. doi: 10.1515/meceng-2017-0018.
[28] A.K. Parida, R. Das, A.K. Sahoo, and B.C. Routara. Optimization of cutting parameters for surface roughness in machining of GFRP composites with graphite/fly ash filler. Procedia Materials Science, 6:1533–1538, 2014. doi: 10.1016/j.mspro.2014.07.134.
[29] M.C. Yip, Y.C. Lin, and C.L. Wu. Effect of multi-walled carbon nanotubes addition on mechanical properties of polymer composites laminate. Polymers and Polymer Composites, 19(2–3):131–140, 2011.
[30] I. Burmistrov, N. Gorshkov, I. Ilinykh, D. Muratov, E. Kolesnikov, S. Anshin, I. Mazov, J.-P. Issi, and D. Kusnezov. Improvement of carbon black based polymer composite electrical conductivity with additions of MWCNT. Composites Science and Technology, 129:79–85, 2016. doi: 10.1016/j.compscitech.2016.03.032.
[31] N.S. Mohan, A. Ramachandra, and S. M. Kulkarni. Influence of process parameters on cutting force and torque during drilling of glass-fiber polyester reinforced composites. Composite Structures, 71(3–4):407–413, 2005. doi: 10.1016/j.compstruct.2005.09.039.
[32] R. Bhat, N. Mohan, S. Sharma, R.A. Agarwal, A. Rathi, and K.A. Subudhi. Multi-response optimization of the thrust force, torque and surface roughness in drilling of glass fiber reinforced polyester composite using GRA-RSM. Materials Today: Proceedings, 19:333–338, 2019. doi: 10.1016/j.matpr.2019.07.608.
[33] T. Miyake, K. Mukae, and M. Futamura. Evaluation of machining damage around drilled holes in a CFRP by fiber residual stresses measured using micro-Raman spectroscopy. Mechanical Engineering Journal, 3(6):1–16, 2016. doi: 10.1299/mej.16-00301.
[34] G.V.G. Rao, P. Mahajan, and N. Bhatnagar. Micro-mechanical modeling of machining of FRP composites – Cutting force analysis. Composites Science and Technology, 67(3–4):579–593, 2007. doi: 10.1016/j.compscitech.2006.08.010.
[35] R.K. Verma, K. Abhishek, S. Datta, P.K. Pal, and S.S. Mahapatra. Multi-response optimization in machining of GFRP (epoxy) composites: An integrated approach. Journal for Manufacturing Science and Production, 15(3):267–292, 2015. doi: 10.1515/jmsp-2014-0054.
[36] K. Pearson. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572, 1901. doi: 10.1080/14786440109462720.
[37] D. Zhao, H. Qi, and J. Pan. A predication analysis of the factors influencing minimum ignition temperature of coal dust cloud based on principal component analysis and support vector machine. Archives of Mining Sciences, 64(2):335–350, 2019. doi: 10.24425/ams.2019.128687.
[38] M. Ukamanal, P.C. Mishra, and A.K. Sahoo. Effects of spray cooling process parameters on machining performance AISI 316 steel: a novel experimental technique. Experimental Techniques, 44(1):19–36, 2020. doi: 10.1007/s40799-019-00334-y.
[39] G. Karuna Kumar, C. Maheswara Rao, and V.V.S. KesavaRao. Application of WPCA & CQL methods in the optimization of mutiple responses. Materials Today: Proceedings, 18:25–36, 2019. doi: 10.1016/j.matpr.2019.06.273.
[40] D. Das, P.C. Mishra, S. Singh, A.K. Chaubey, and B.C. Routara. Machining performance of aluminium matrix composite and use of WPCA based Taguchi technique for multiple response optimization. International Journal of Industrial Engineering Computations, 9(4):551–564, 2018. doi: 10.5267/j.ijiec.2017.10.001.
[41] S.D. Mohanty, S.S. Mahapatra, and R.C. Mohanty. PCA based hybrid Taguchi philosophy for optimization of multiple responses in EDM. SADHANA, 44(1):1–9, 2019. doi: 10.1007/s12046-018-0982-z.
[42] U.A. Khashaba. Delamination in drilling GFR-thermoset composites. Composite Structures, 63(3–4):313–327, 2004. doi: 10.1016/S0263-8223(03)00180-6.
[43] L. Gemi, S. Morkavuk, U. Köklü, and D.S. Gemi. An experimental study on the effects of various drill types on drilling performance of GFRP composite pipes and damage formation. Composites Part B: Engineering, 172:186–194, 2019. doi: 10.1016/j.compositesb.2019.05.023.
[44] L. Li, C. Yan, H. Xu, D. Liu, P. Shi, Y. Zhu, G. Chen, X. Wu, and W. Liu. Improving the interfacial properties of carbon fiber–epoxy resin composites with a graphene-modified sizing agent. Journal of Applied Polymer Science, 136(9):1–10, 2019. doi: 10.1002/app.47122.
[45] U. Aich, R.R. Behera, and S. Banerjee. Modeling of delamination in drilling of glass fiber-reinforced polyester composite by support vector machine tuned by particle swarm optimization. International Journal of Plastics Technology, 23(1):77–91, 2019. doi: 10.1007/s12588-019-09233-8.
[46] D. Kumar and K.K. Singh. Investigation of delamination and surface quality of machined holes in drilling of multiwalled carbon nanotube doped epoxy/carbon fiber reinforced polymer nanocomposite. Journal of Materials: Design and Applications, 233(4):647–663, 2019. doi: 10.1177/1464420717692369.
[47] P. Kyratsis, A.P. Markopoulos, N. Efkolidis, V. Maliagkas, and K. Kakoulis. Prediction of thrust force and cutting torque in drilling based on the response surface methodology. Machines, 6(2):24, 2018. doi: 10.3390/MACHINES6020024.
[48] C.C. Tsao. Thrust force and delamination of core-saw drill during drilling of carbon fiber reinforced plastics (CFRP). The International Journal of Advanced Manufacturing Technology, 37(1–2):23–28, 2008. doi: 10.1007/s00170-007-0963-6.
[49] A.M. Abrão, J.C.C. Rubio, P.E. Faria, and J.P. Davim. The effect of cutting tool geometry on thrust force and delamination when drilling glass fibre reinforced plastic composite. Materials & Design, 29(2):508–513, 2008. doi: 10.1016/j.matdes.2007.01.016.
[50] A. Janakiraman, S. Pemmasani, S. Sheth, C. Kannan, and A.S.S. Balan. Experimental investigation and parametric optimization on hole quality assessment during drilling of CFRP/GFRP/Al stacks. Journal of The Institution of Engineers (India): Series C, 101:291–302, 2020. doi: 10.1007/s40032-020-00563-w.
[51] S.Y. Park, W.J. Choi, C.H. Choi, and H.S. Choi. Effect of drilling parameters on hole quality and delamination of hybrid GLARE laminate. Composite Structures, 185:684–698, 2018. doi: 10.1016/j.compstruct.2017.11.073.
[52] R. Świercz, D. Oniszczuk-Świercz, J. Zawora, and M. Marczak. Investigation of the influence of process parameters on shape deviation after wire electrical discharge machining. Archives of Metallurgy and Materials, 64(4):1457–1462, 2019. doi: 10.24425/amm.2019.130113.
[53] K. Palanikumar. Modeling and analysis of delamination factor and surface roughness in drilling GFRP composites. Materials and Manufacturing Processes, 25(10):1059–1067, 2010. doi: 10.1080/10426910903575830.
[54] S.K. Rathore, J. Vimal, and D.K. Kasdekar. Determination of optimum parameters for surface roughness in CNC turning by using GRA-PCA. International Journal of Engineering, Science and Technology, 10(2):37–49, 2018. doi: 10.4314/ijest.v10i2.5.
[55] A. Gok. A new approach to minimization of the surface roughness and cutting force via fuzzy TOPSIS, multi-objective grey design and RSA. Measurement, 70:100–109, 2015. doi: 10.1016/j.measurement.2015.03.037.
[56] N.L. Bhirud and R.R. Gawande. Optimization of process parameters during end milling and prediction of work piece temperature rise. Archive of Mechanical Engineering, 64(3):327–346, 2017. doi: 10.1515/meceng-2017-0020.
[57] B.A. Rezende, F. de Castro Magalhães, and J.C. Campos Rubio. Study of the measurement and mathematical modelling of temperature in turning by means equivalent thermal conductivity. Measurement, 152:107275, 2020. doi: 10.1016/j.measurement.2019.107275.
[58] A. Bhattacharya, S. Das, P. Majumder, and A. Batish. Estimating the effect of cutting parameters on surface finish and power consumption during high speed machining of AISI 1045 steel using Taguchi design and ANOVA. Production Engineering, 3(1):31–40, 2009. doi: 10.1007/s11740-008-0132-2.
[59] A. Taşkesen and K. Kütükde. Experimental investigation and multi-objective analysis on drilling of boron carbide reinforced metal matrix composites using grey relational analysis. Measurement, 47:321–330, 2014. doi: 10.1016/j.measurement.2013.08.040.
[60] B.B. Nayak, K. Abhishek, S.S. Mahapatra, and D. Das. Application of WPCA based Taguchi method for multi-response optimization of abrasive jet machining process. Materials Today: Proceedings, 5(2):5138–5144, 2018. doi: 10.1016/j.matpr.2017.12.095.
[61] K. Palanikumar, L. Karunamoorthy, and N. Manoharan. Mathematical model to predict the surface roughness on the machining of glass fiber reinforced polymer composites. Journal of Reinforced Plastics and Composites, 25(4):407–419, 2006. doi: 10.1177/0731684405060568.
[62] R. Świercz, D. Oniszczuk-Świercz, and L. Dabrowski. Electrical discharge machining of difficult to cut materials. Archive of Mechanical Engineering, 65(4):461–476, 2018. doi: 10.24425/ame.2018.125437.
[63] A. Hamdi, S.M. Merghache, and T. Aliouane. Effect of cutting variables on bearing area curve parameters (BAC-P) during hard turning process. Archive of Mechanical Engineering, 67(1):73–95, 2020. doi: 10.24425/ame.2020.131684.
[64] V. Kavimani, K.S. Prakash, and T. Thankachan. Influence of machining parameters on wire electrical discharge machining performance of reduced graphene oxide/magnesium composite and its surface integrity characteristics. Composites Part B: Engineering, 167:621–630, 2019. doi: 10.1016/j.compositesb.2019.03.031.
[65] Y. Quan and L. Sun. Investigation on drilling-induced delamination of CFRP with infiltration method. Advanced Materials Research, 139–141:55–58, 2010. doi: 10.4028/www.scientific.net/AMR.139-141.55.
[66] O. Isbilir and E. Ghassemieh. Delamination and wear in drilling of carbon-fiber reinforced plastic composites using multilayer TiAlN/TiN PVD-coated tungsten carbide tools. Journal of Reinforced Plastics and Composites, 31(10):717–727, 2012. doi: 10.1177/0731684412444653.
Go to article

Authors and Affiliations

Kumar Jogendra
1
Rajesh Kumar Verma
1
Arpan Kumar Mondal
2

  1. Department of Mechanical Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, India.
  2. Department of Mechanical Engineering, National Institute of Technical Teachers Training and Research, Kolkata, India.
Download PDF Download RIS Download Bibtex

Abstract

In recent years, manufacturing industries have demanded high-performance materials for structural components development due to their reduced weight, improved strength, corrosion, and moisture resistance. The outstanding performance of polymer nano-composites substitutes the use of conventional composites materials. This study is concerned with the machining of MWCNT and glass fiber-modified epoxy composites prepared by a cost-effective hand layup procedure. The investigations were carried out to estimate the generation of the thrust force (Th) and delamination factors at entry (DF entry) and exit (DF exit) side during the drilling of fiber composites. The effect of varying constraints on the machining indices was explored for obtaining an adequate quality of hole created in the epoxy nano-composites. The outcome shows that the feed rate (F) is the most critical factor influencing delamination at both entry and exit side, and the second one is the thrust force followed by wt. % of MWCNT. The statistical study shows that optimal combination of S (1650 Level-2), F (165 Level-2), and 2 wt. % of MWCNT (Level-2) can be used to minimize DF entry, DF exit, and Th. The drilling-induced damages were studied by means of a high-resolution microscopy test. The results reveal that the supplement of MWCNT substantially increases the machining efficiency of the developed nano-composites.
Go to article

Bibliography

[1] J. Du, H. Zhang, Y. Geng, W. Ming, W. He, J. Ma, Y. Cao, X. Li, and K. Liu. A review on machining of carbon fiber reinforced ceramic matrix composites. Ceramics International, 45(15):18155–18166, 2019. doi: 10.1016/j.ceramint.2019.06.112.
[2] N.R.M. Akmam, M. Mullah, and M.Z. Zakaria. Study on tool wear mechanism during milling of JFRP composite. International Journal of Science and Engineering Investigations, 9(98):20–26, 2020.
[3] D. Geng, Y. Liu, Z. Shao, Z. Lu, J. Cai, X. Li, X. Jiang, and D. Zhang. Delamination formation, evaluation and suppression during drilling of composite laminates: A review. Composite Structures, 216:168–186, 2019. doi: 10.1016/j.compstruct.2019.02.099.
[4] G. Rajaraman, S.K. Agasti, and M.P. Jenarthanan. Investigation on effect of process parameters on delamination during drilling of kenaf-banana fiber reinforced in epoxy hybrid composite using Taguchi method. Polymer Composites, 41(3):994–1002, 2020. doi: 10.1002/pc.25431.
[5] M. Ramesh and A. Gopinath. Measurement and analysis of thrust force in drilling sisal-glass fiber reinforced polymer composites. IOP Conference Series: Materials Science and Enginierring, 197:012056, 2017. doi: 0.1088/1757-899X/197/1/012056.
[6] U.H. Babu, N.V. Sai, and R.K. Sahu. Artificial intelligence system approach for optimization of drilling parameters of glass-carbon fiber/polymer composites. Silicon, 13:2943–2957, 2021. doi: 10.1007/s12633-020-00637-5.
[7] W. Li, A. Dichiara, and J. Bai. Carbon nanotube-graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites. Composites Science and Technology, 74:221–227, 2013. doi: 10.1016/j.compscitech.2012.11.015.
[8] S.G. Ghalme, Y. Bhalerao, and K. Phapale. Analysis of factors affecting delamination in drilling GFRP composite. Journal of Computational and Applied Research in Mechanical Engineering, 10(2):281–289, 2021. doi: 10.22061/jcarme.2019.4397.1530.
[9] S. Manteghi, A. Sarwar, Z. Fawaz, R. Zdero, and H. Bougherara. Mechanical characterization of the static and fatigue compressive properties of a new glass/flax/epoxy composite material using digital image correlation, thermographic stress analysis, and conventional mechanical testing. Materials Science and Engineering: C, 99:940–950, 2019. doi: 10.1016/j.msec.2019.02.041.
[10] J. Samuel, A. Dikshit, R.E. DeVor, S.G. Kapoor, and K.J. Hsia. Effect of carbon nanotube (CNT) loading on the thermomechanical properties and the machinability of CNT-reinforced polymer composites. Journal of Manufacturing Science and Engineering, 131(3):031008, 2009. doi: 10.1115/1.3123337.
[11] A. Babu Arumugam, V. Rajamohan, N. Bandaru, E.P. Sudhagar, and S.G. Kumbhar. Vibration analysis of a carbon nanotube reinforced uniform and tapered composite beams. Archives of Acoustics, 44(2):309–320. doi: .
[12] X. Wang, Q. Zheng, S. Dong, A. Ashour, and B. Han. Interfacial characteristics of nano-engineered concrete composites. Construction and Building Matererials, 259:119803, 2020. doi: 10.1016/j.conbuildmat.2020.119803.
[13] A.K. Chakraborty, T. Plyhm, M. Barbezat, A. Necola, and G.P. Terrasi. Carbon nanotube (CNT)-epoxy nanocomposites: A systematic investigation of CNT dispersion. Journal of Nanoparticle Research, 13:6493–6506, 2011. doi: 10.1007/s11051-011-0552-3.
[14] D.K. Rathore, R.K. Prusty, D.S. Kumar, and B.C. Ray. Mechanical performance of CNT-filled glass fiber/epoxy composite in in-situ elevated temperature environments emphasizing the role of CNT content. Composites Part A: Applied Science and Manufacturing, 84:364–376, 2016. doi: 10.1016/j.compositesa.2016.02.020.
[15] L. Sun, Y. Zhao, Y. Duan , and Z. Zhang. Interlaminar shear property of modified glass fiber-reinforced polymer with different MWCNTs. Chinese Journal of Aeronautics, 21(4):361–369, 2008. doi: 10.1016/S1000-9361(08)60047-3.
[16] A. Esmaeili, C. Sbarufatti, andA.M.S. Hamouda. Investigation of mechanical properties of MWCNTs doped epoxy nanocomposites in tensile, fracture and impact tests. Materials Science Forum, 990:239–243, 2020. doi: 10.4028/www.scientific.net/msf.990.239.
[17] A. Tabatabaeian and A.R. Ghasemi. The impact of MWCNT modification on the structural performance of polymeric composite profiles. Polymer Bulletin, 77:6563–6576, 2020. doi: 10.1007/s00289-019-03088-0.
[18] A. Gaurav and K.K. Singh. Effect of pristine MWCNTs on the fatigue life of GFRP laminates-an experimental and statistical evaluation. Composites Part B: Engineering, 172:83–96, 2019. doi: 10.1016/j.compositesb.2019.05.069.
[19] B. Shivamurthy, S. Anandhan, K.U. Bhat, and B.H.S. Thimmappa. Structure-property relationship of glass fabric/MWCNT/epoxy multi-layered laminates. Composites Communications, 22:100460, 2020. doi: 10.1016/j.coco.2020.100460.
[20] A. Uysal. Evaluation of drilling parameters on surface roughness and burr when drilling carbon black reinforced high-density polyethylene. Journal of Composite Materials, 52(20):2719–2727, 2018. doi: 10.1177/0021998317752505.
[21] F. Susac and F. Stan. Experimental investigation, modeling and optimization of circularity, cylindricity and surface roughness in drilling of PMMA using ANN and ANOVA. Materiale Plastice, 57(1):57–68, 2020. doi: 10.37358/MP.20.1.5312.
[22] P. Czarnocki and T. Zagrajek. Growth stability analysis of embedded delaminations with the use of FE node relocation procedure and effective resistance curve concept. Archive of Mechanical Engineering, 67(4):415–433, 2020. doi: 10.24425/ame.2020.131702.
[23] L. Liu, C. Qi, F. Wu, X. Zhang, and X. Zhu. Analysis of thrust force and delamination in drilling GFRP composites with candle stick drills. The International Journal of Advanced Manufacturing Technology, 95:2585–2600, 2018. doi: 10.1007/s00170-017-1369-8.
[24] M.P. Jenarthanan and R. Jeyapaul. Optimisation of machining parameters on milling of GFRP composites by desirability function analysis using Taguchi method. International Journal of Engineering, Science and Technology, 5(4):23–36. doi: 10.4314/ijest.v5i4.3.
[25] P. Raveendran and P. Marimuthu. Multi-response optimization of turning parameters for machining glass fiber-reinforced plastic composite rod. Advances in Mechanical Engineering, 7:1–10, 2015. doi: 10.1177/1687814015620109.
[26] D.I. Poór, N. Geier, C. Pereszlai, and J. Xu. A critical review of the drilling of CFRP composites: Burr formation, characterisation and challenges. Composites Part B: Engineering, 223:109155, 2021. doi: 10.1016/j.compositesb.2021.109155.
[27] R. Higuchi, S. Warabi, W. Ishibashi, and T. Okabe. Experimental and numerical investigations on push-out delamination in drilling of composite laminates. Composites Science and Technology, 198:108238, 2020. doi: 10.1016/j.compscitech.2020.108238.
[28] J. Kumar, R.K. Verma, and A.K. Mondal. Predictive modeling and machining performance optimization during drilling of polymer nanocomposites reinforced by graphene oxide/carbon fiber. Archive of Mechanical Engineering, 67(2):229–258. doi: 10.24425/ame.2020.131692.
[29] N. Hoffmann, G.S.C. Souza, A.J. Souza, and V. Tita. Delamination and hole wall roughness evaluation in air-cooled drilling of carbon fiber-reinforced polymer. Journal of Composite Materials, 55(23):3161–3174, 2021. doi: 10.1177/00219983211009281.
[30] A.T. Erturk, F. Vatansever, E. Yarar, E.A. Guven, and T. Sinmazcelik. Effects of cutting temperature and process optimization in drilling of GFRP composites. Journal of Composite Materials, 55(2):235–249, 2021. doi: 10.1177/0021998320947143.
[31] R. Pramod, S. Basavarajappa, G.B. Veeresh Kumar, and M. Chavali. Drilling induced delamination assessment of nanoparticles reinforced polymer matrix composites. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021. doi: 10.1177/09544062211030967.
[32] P.K. Kharwar, R.K. Verma, N.K. Mandal, and A.K. Mondal. Swarm intelligence integrated approach for experimental investigation in milling of multiwall carbon nanotube/polymer nanocomposites. Archive of Mechanical Engineering, 67(3):353–376, 2020. doi: 10.24425/ame.2020.131698.
[33] S. Gokulkumar, P.R. Thyla, R. ArunRamnath, and N. Karthi. Acoustical analysis and drilling process optimization of Camellia Sinensis / Ananas Comosus / GFRP / Epoxy composites by TOPSIS for indoor applications. Journal of Natural Fibers, 18(12):2284–2301. doi: 10.1080/15440478.2020.1726240.
[34] S. Liu, T. Yang, C. Liu, Y. Jin, D. Sun, and Y. Shen. Modelling and experimental validation on drilling delamination of aramid fiber reinforced plastic composites. Composite Structures, 236:111907, 2020. doi: 10.1016/j.compstruct.2020.111907.
[35] U. Bhushi, J. Suthar, and S.N. Teli. Performance analysis of metaheuristics optimization techniques for drilling process on CFRP composites. Materials Today: Proceedings, 28(2):1106–1114, 2020. doi: 10.1016/j.matpr.2020.01.091.
[36] A. Janakiraman, S. Pemmasani, S. Sheth, C. Kannan, and A.S.S. Balan. Experimental investigation and parametric optimization on hole quality assessment during drilling of CFRP/GFRP/Al stacks. Journal of The Institution of Engineers (India): Series C, 101:291–302, 2020. doi: 10.1007/s40032-020-00563-w.
[37] M. Mudhukrishnan, P. Hariharan, and K. Palanikumar. Measurement and analysis of thrust force and delamination in drilling glass fiber reinforced polypropylene composites using different drills. Measurement, 149:106973, 2020. doi: 10.1016/j.measurement.2019.106973.
[38] B.-C. Kwon, N.D.D. Mai, E.S. Cheon, and S.L. Ko. Development of a step drill for minimization of delamination and uncut in drilling carbon fiber reinforced plastics (CFRP). The International Journal of Advanced Manufacturing Technology , 106:1291–1301, 2020. doi: 10.1007/s00170-019-04423-5.
[39] T. Panneerselvam, S. Raghuraman, T.K. Kandavel, and K. Mahalingam. Evaluation and analysis of delamination during drilling on Sisal-Glass Fibres Reinforced Polymer. Measurement, 154:107462, 2020. doi: 10.1016/j.measurement.2019.107462.
[40] A. Landesmann, C.A. Seruti, and E. de Miranda Batista. Mechanical properties of glass fiber reinforced polymers members for structural applications. Materials Research, 18(6):1372–1383, 2015. doi: 10.1590/1516-1439.044615.
[41] K. Askaripour and A. Zak. A survey of scrutinizing delaminated composites via various categories of sensing apparatus. Journal of Composites Science, 3(4):95, 2019 doi: 10.3390/jcs3040095.
[42] M.R. Sanjay and B. Yogesha. Studies on natural/glass fiber reinforced polymer hybrid composites: An evolution. Materials Today: Proceedings, 4(2):2739–2747, 2017. doi: 10.1016/j.matpr.2017.02.151.
[43] M.Y. Abdellah, M.S. Alsoufi, M.K. Hassan,H.A. Ghulman, and A.F. Mohamed. Extended finite element numerical analysis of scale effect in notched glass fiber reinforced epoxy composite. Archive of Mechanical Engineering, 62(2):217–236, 2015. doi: 10.1515/meceng-2015-0013.
[44] K. Rodsin, Q. Hussain, P. Joyklad, A. Nawaz, and H. Fazliani. Seismic strengthening of nonductile bridge piers using low-cost glass fiber polymers. B Bulletin of the Polish Academy of Sciences: Technical Sciences, 68(6):1457–1470, 2020. doi: 10.24425/bpasts.2020.135383.
[45] R. Bielawski, M. Kowalik, K. Suprynowicz, R. Rządkowski,and P. Pyrzanowski. Experimental study on the riveted joints in glass fibre reinforced plastics (GFRP). Archive of Mechanical Engineering, 64(3):301–313, 2017. doi: 10.1515/meceng-2017-0018.
[46] N. Rasana, K. Jayanarayanan, B.D.S. Deeraj, and K. Joseph. The thermal degradation and dynamic mechanical properties modeling of MWCNT/glass fiber multiscale filler reinforced polypropylene composites. Composites Science and Technology, 169:249–259, 2019. doi: 10.1016/j.compscitech.2018.11.027.
[47] A.D. Dobrzańska-Danikiewicz, D. Łukowiec, D. Cichocki, and W. Wolany. Comparison of the MWCNTs-Rh and MWCNTs-Re carbon-metal nanocomposites obtained in hightemperature. Archives of Metallurgy and Materials, 60(3):2053–2060, 2015. doi: 10.1515/amm-2015-0348.
[48] Ö Demircan, K. Kadıoğlu, P. Çolak, E. Günaydın, M. Doğu, N. Topalömer, and V. Eskizeybekl. Compression after impact and Charpy impact characterizations of glass fiber/epoxy/MWCNT composites. Fibers and Polymers, 21(8):1824–1831, 2020. doi: 10.1007/s12221-020-9921-9.
[49] P.K. Kharwar and R.K. Verma. Machining performance optimization in drilling of multiwall carbon nano tube /epoxy nanocomposites using GRA-PCA hybrid approach. Measurement, 158:107701, 2020. doi: 10.1016/j.measurement.2020.107701.
[50] C.R.Raajeshkrishna, P. Chandramohan, and V.S. Saravanan. Thermomechanical characterization and morphological analysis of nano basalt reinforced epoxy nanocomposites. International Journal of Polymer Analysis and Characterization, 25(4):216–226, 2020. doi: 10.1080/1023666X.2020.1781479.
[51] K.M. Tripathi, A. Sachan, M. Castro, V. Choudhary, S.K. Sonkar, and J.F. FellerF. Green carbon nanostructured quantum resistive sensors to detect volatile biomarkers. Sustainable Materials and Technologies, 16:1–11, 2018. doi: 10.1016/j.susmat.2018.01.001.
[52] P. Rawat and K.K. Singh. A strategy for enhancing shear strength and bending strength of FRP laminate using MWCNTs. IOP Conference Series: Materials Science and Engineering, 149:012105, 2015. doi: 10.1088/1757-899X/149/1/012105.
[53] S. Yeasmin, J.H. Yeum, and S.B Yang. Fabrication and characterization of pullulan-based nanocomposites reinforced with montmorillonite and tempo cellulose nanofibril. Carbohydrate Polymers, 240:116307, 2020. doi: 10.1016/j.carbpol.2020.116307.
[54] K. Hosseinpour and A.R. Ghasemi. Agglomeration and aspect ratio effects on the long-term creep of carbon nanotubes/fiber/polymer composite cylindrical shells. Journal of Sandwich Structures & Materials, 23(4):1272–1291, 2021. doi: 10.1177/1099636219857200.
[55] A.R. Ghasemi, M. Mohandes, R. Dimitri, and F. Tornabene. Agglomeration effects on the vibrations of CNTs/fiber/polymer/metal hybrid laminates cylindrical shell. Composites Part B: Engineering, 167:700–716, 2019. doi: 10.1016/j.compositesb.2019.03.028.
[56] G.C. Onwubolu and S. Kumar. Response surface methodology-based approach to CNC drilling operations. Journal of Materials Processing Technology, 171(1):41–47, 2006. doi: 10.1016/j.jmatprotec.2005.06.064.
[57] E. Kilickap, M. Huseyinoglu, and A. Yardimeden. Optimization of drilling parameters on surface roughness in drilling of AISI 1045 using response surface methodology and genetic algorithm. The International Journal of Advanced Manufacturing Technology, 52:79–88, 2011. doi: 10.1007/s00170-010-2710-7.
[58] C.C. Tsao. Comparison between response surface methodology and radial basis function network for core-center drill in drilling composite materials. The International Journal of Advanced Manufacturing Technology, 37:1061–1068, 2008. doi: 10.1007/s00170-007-1057-1.
[59] E. Kilickap. Modeling and optimization of burr height in drilling of Al-7075 using Taguchi method and response surface methodology. The International Journal of Advanced Manufacturing Technology, 49:911–923, 2010. doi: 10.1007/s00170-009-2469-x.
[60] A. Ramaswamy and A.V. Perumal. Multi-objective optimization of drilling EDM process parameters of LM13 Al alloy–10ZrB$_2$–5TiC hybrid composite using RSM. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42:432, 2020. doi: 10.1007/s40430-020-02518-9.
[61] K.K. Panchagnula and K. Palaniyandi. Drilling on fiber reinforced polymer/nanopolymer composite laminates: A review. Journal of Materials Research and Technology, 7(2):180–189, 2018. doi: 10.1016/j.jmrt.2017.06.003.
[62] D. Kumar and K.K. Singh. An experimental investigation of surface roughness in the drilling of MWCNT doped carbon/epoxy polymeric composite material. IOP Conference Series: Materials Science and Engineering, 149:012096, 2016. doi: 10.1088/1757-899X/149/1/012096.
[63] M. Mudegowdar. Influence of cutting parameters during drilling of filled glass fabric-reinforced epoxy composites. Science and Engineering of Composite Materials, 22(1):81–88, 2013. doi: 10.1515/secm-2013-0198.
[64] Ş Bayraktar and Y. Turgut. Determination of delamination in drilling of carbon fiber reinforced carbon matrix composites/Al 6013-T651 stacks. Measurement, 154:107493, 2020. doi: 10.1016/j.measurement.2020.107493.
[65] K.M. John and T.S. Kumaran. Backup support technique towards damage-free drilling of composite materials: A review. International Journal of Lightweight Materials and Manufacture, 3(4):357–364, 2020. doi: 10.1016/j.ijlmm.2020.06.001.
[66] L.M.P. Durão, J.M.R.S. Tavares, V.H.C. De Albuquerque, J.F.S. Marques, and O.N.G. Andrade. Drilling damage in composite material. Materials, 7(5):3802–3819, 2014. doi: 10.3390/ma7053802.
[67] B.R.N. Murthy, R. Beedu, R. Bhat, N. Naik, and P. Prabakar. Delamination assessment in drilling basalt/carbon fiber reinforced epoxy composite material. Journal of Materials Research and Technology, 9(4):7427–7433, 2020. doi: 10.1016/j.jmrt.2020.05.001.
[68] S.O. Ojo, S.O. Ismail, M. Paggi, and H.N. Dhakal. A new analytical critical thrust force model for delamination analysis of laminated composites during drilling operation. Composites Part B: Engineering, 124:207–217, 2017. doi: 10.1016/j.compositesb.2017.05.039.
[69] D. Wang, F. Jiao, and X. Mao. Mechanics of thrust force on chisel edge in carbon fiber reinforced polymer (CFRP) drilling based on bending failure theory. International Journal of Mechanical Sciences, 169:105336, 2020. doi: 10.1016/j.ijmecsci.2019.105336.
[70] N. Kaushik and S. Singhal. Hybrid combination of Taguchi-GRA-PCA for optimization of wear behavior in AA6063/SiC$_{\rm p}$ matrix composite. Production & Manufacturing Research , 6(1):171–189, 2018. doi: 10.1080/21693277.2018.1479666.
[71] K. Aslantas, E. Ekici, and A. Çiçek. Optimization of process parameters for micro milling of Ti-6Al-4V alloy using Taguchi-based gray relational analysis. Measurement, 128:419–427, 2018. doi: 10.1016/j.measurement.2018.06.066.
[72] S. Ragunath, C. Velmurugan, and T. Kannan. Optimization of drilling delamination behavior of GFRP/clay nano-composites using RSM and GRA methods. Fibers and Polymers, 18:2400–2409, 2017. doi: 10.1007/s12221-017-7420-4.
[73] P.M. Gopal and K. Soorya Prakash. Minimization of cutting force, temperature and surface roughness through GRA, TOPSIS and Taguchi techniques in end milling of Mg hybrid MMC. Measurement, 116:178–192, 2018. doi: 10.1016/j.measurement.2017.11.011.
[74] S.M. Shahabaz, N. Shetty, S.D. Shetty, and S.S. Sharma. Surface roughness analysis in the drilling of carbon fiber/epoxy composite laminates using hybrid Taguchi-Response experimental design. Materials Research Express, 7(1):015322, 2020. doi: 10.1088/2053-1591/ab6198.
[75] D. Kumar, K.K. Singh, and R. Zitoune. Experimental investigation of delamination and surface roughness in the drilling of GFRP composite material with different drills. Advanced Manufacturing: Polymer & Composites Science, 2(2):47–56, 2016. doi: 10.1080/20550340.2016.1187434.
[76] K. Palanikumar. Experimental investigation and optimisation in drilling of GFRP composites. Measurement, 44(10):2138–2148, 2011. doi: 10.1016/j.measurement.2011.07.023.
[77] B. Latha and V.S. Senthilkumar. Modeling and analysis of surface roughness parameters in drilling GFRP composites using fuzzy logic. Materials and Manufacturing Processes, 25(8):817-827, 2010. doi: 10.1080/10426910903447261.
[78] F. Ficici. Evaluation of surface roughness in drilling particle-reinforced composites. Advanced Composites Letters, 29:1–11, 2020. doi: 10.1177/2633366X20937711.
Go to article

Authors and Affiliations

Kuldeep Kumar
1
ORCID: ORCID
Rajesh Kumar Verma
1
ORCID: ORCID

  1. Materials and Morphology Laboratory, Department of Mechanical Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, India
Download PDF Download RIS Download Bibtex

Abstract

In manufacturing industries, the selection of machine parameters is a very complicated task in a time-bound manner. The process parameters play a primary role in confirming the quality, low cost of manufacturing, high productivity, and provide the source for sustainable machining. This paper explores the milling behavior of MWCNT/epoxy nanocomposites to attain the parametric conditions having lower surface roughness (Ra) and higher materials removal rate (MRR). Milling is considered as an indispensable process employed to acquire highly accurate and precise slots. Particle swarm optimization (PSO) is very trendy among the nature-stimulated metaheuristic method used for the optimization of varying constraints. This article uses the non-dominated PSO algorithm to optimize the milling parameters, namely, MWCNT weight% (Wt.), spindle speed (N), feed rate (F), and depth of cut (D). The first setting confirmatory test demonstrates the value of Ra and MRR that are found as 1:62 μm and 5.69 mm3/min, respectively and for the second set, the obtained values of Ra and MRR are 3.74 μm and 22.83 mm3/min respectively. The Pareto set allows the manufacturer to determine the optimal setting depending on their application need. The outcomes of the proposed algorithm offer new criteria to control the milling parameters for high efficiency.

Go to article

Bibliography

[1] M. Liu, H. Younes, H. Hong, and G.P. Peterson. Polymer nanocomposites with improved mechanical and thermal properties by magnetically aligned carbon nanotubes. Polymer, 166:81–87, 2019. doi: 10.1016/j.polymer.2019.01.031.
[2] S.K. Singh and V.K. Verma. Exact solution of flow in a composite porous channel. Archive of Mechanical Engineering, 67(1):97–110, 2020, doi: 10.24425/ame.2020.131685.
[3] N. Pundhir, S. Zafar, and H. Pathak. Performance evaluation of HDPE/MWCNT and HDPE/kenaf composites. Journal of Thermoplastic Composite Materials, 2019. doi: 10.1177/0892705719868278.
[4] N. Muralidhar, V. Kaliveeran, V. Arumugam, and I.S. Reddy. Dynamic mechanical characterization of epoxy composite reinforced with areca nut husk fiber. Archive of Mechanical Engineering, 67(1):57–72, 2020, doi: 10.24425/ame.2020.131683.
[5] F. Mostaani, M.R. Moghbeli, and H. Karimian. Electrical conductivity, aging behavior, and electromagnetic interference (EMI) shielding properties of polyaniline/MWCNT nanocomposites. Journal of Thermoplastic Composite Materials, 31(10):1393–1415, 2018. doi: 10.1177/0892705717738294.
[6] M.R. Sanjay, P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil, and S. Pradeep. Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production, 172:566–581, 2018. doi: 10.1016/j.jclepro.2017.10.101.
[7] A.J. Valdani and A. Adamian. Finite element-finite volume simulation of underwater explosion and its impact on a reinforced steel plate. Archive of Mechanical Engineering, 67(1):5–30, 2020, doi: 10.24425/ame.2020.131681.
[8] A. Kausar, I. Rafique, and B. Muhammad. Review of applications of polymer/carbon nanotubes and epoxy/CNT composites. Polymer-Plastics Technology and Engineering, 55(11):1167–1191, 2016. doi: 10.1080/03602559.2016.1163588.
[9] E. Vajaiac, et al. Mechanical properties of multiwall carbon nanotube-epoxy composites. Digest Journal of Nanomaterials and Biostructures, 10(2):359–369, 2015.
[10] A.E Douba, M. Emiroglu, R.A Tarefder, U.F Kandil, and M.R. Taha. Use of carbon nanotubes to improve fracture toughness of polymer concrete. Journal of the Transportation Research Board, 2612(1):96–103, 2017. doi: 10.3141/2612-11.
[11] W. Khan, R. Sharma, and P. Saini. Carbon nanotube-based polymer composites: synthesis, properties and applications. In M.R. Berber and I.H. Hafez (eds.). Carbon Nanotubes. Current Progress and their Polymer Composites. chapter 1, pages 1-46. IntechOpen, Rijeka, Croatia, 2016. doi: 10.5772/62497.
[12] W.M. da Silva, H. Ribeiro, J.C. Neves, A.R. Sousa, and G.G. Silva. Improved impact strength of epoxy by the addition of functionalized multiwalled carbon nanotubes and reactive diluent. Journal of Applied Polymer Science, 132(39):1–12, 2015, doi: 10.1002/app.42587.
[13] S. Dixit, A. Mahata, D.R. Mahapatra, S.V. Kailas, and K. Chattopadhyay. Multi-layer graphene reinforced aluminum – Manufacturing of high strength composite by friction stir alloying. Composites Part B: Engineering,136: 63–71, 2018. doi: 10.1016/j.compositesb.2017.10.028.
[14] C. Kostagiannakopoulou, X. Tsilimigkra, G. Sotiriadis, and V. Kostopoulos. Synergy effect of carbon nano-fillers on the fracture toughness of structural composites. Composites Part B: Engineering, 129:18–25, 2017. doi: 10.1016/j.compositesb.2017.07.012.
[15] G. Romhány and G. Szebényi. Preparation of MWCNT reinforced epoxy nanocomposite and examination of its mechanical properties. Plastics, Rubber and Composites, 37(5-6):214–218, 2008. doi: 10.1179/174328908X309376.
[16] G. Mittal, V. Dhand, K.Y. Rhee, S.J. Park, and W.R. Lee. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. Journal of Industrial and Engineering Chemistry, 21:11–25, 2015. doi: 10.1016/j.jiec.2014.03.022.
[17] S. H. Behzad, M.J. Kimya, G. Mehrnaz. Mechanical properties of multi-walled carbon nanotube/epoxy polysulfide nanocomposite. Journal of Materials & Design, 50:62–67, 2013.
[18] N. Yu, Z.H. Zhang, and S.Y. He. Fracture toughness and fatigue life of MWCNT/epoxy composites. Materials Science and Engineering: A, 494(1-2):380:384, 2018. doi: 10.1016/j.msea.2008.04.051.
[19] J.G. Park, et al. Thermal conductivity of MWCNT/epoxy composites: The effects of length, alignment and functionalization. Carbon, 50(6):2083–2090, 2012. doi: 10.1016/j.carbon.2011.12.046.
[20] B. Singaravel and T. Selvaraj. Optimization of machining parameters in turning operation using combined TOPSIS and AHP method. Tehnički Vjesnik, 22 (6):1475–1480, 2015. doi: 10.17559/TV-20140530140610.
[21] N. Kaushik and S. Singhal. Hybrid combination of Taguchi-GRA-PCA for optimization of wear behavior in AA6063/SiC p matrix composite. Production & Manufacturing Research, 6(1):171–189, 2018. doi: 10.1080/21693277.2018.1479666.
[22] S.O.N. Raj and S. Prabhu. Analysis of multi objective optimisation using TOPSIS method in EDM process with CNT infused copper electrode. International Journal of Machining and Machinability of Materials, 19(1):76–94, 2017. doi: 10.1504/IJMMM.2017.081190.
[23] S. Chakraborty. Applications of the MOORA method for decision making in manufacturing environment. International Journal of Advanced Manufacturing Technology, 54(9-12):1155–1166, 2011. doi: 10.1007/s00170-010-2972-0.
[24] M.P. Jenarthanan and R. Jeyapaul. Optimisation of machining parameters on milling of GFRP composites by desirability function analysis using Taguchi method. International Journal of Engineering, Science and Technology, 5(4):23–36, 2013. doi: 10.4314/ijest.v5i4.3.
[25] T.V. Sibalija. Particle swarm optimisation in designing parameters of manufacturing processes: A review (2008–2018). Applied Soft Computing, 84:105743, ISSN 1568-4946, doi: 10.1016/j.asoc.2019.105743.
[26] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of the ICNN'95 – International Conference on Neural Networks, pages 1942–1948, Perth, Australia, 27 Nov.–1 Dec. 1995. doi: 10.1109/ICNN.1995.488968.
[27] F. Cus and J. Balic. Optimization of cutting process by GA approach. Robotics and Computer-Integrated Manufacturing, 19(1-2):113–121, 2003. doi: 10.1016/S0736-5845(02)00068-6.
[28] M.N. Ab Wahab, S. Nefti-Meziani, and A. Atyabi. A comprehensive review of swarm optimization algorithms. PLoS One, 10(5): e0122827, 2015. doi: 10.1371/journal.pone.0122827.
[29] A. Del Prete, R. Franchi, and D. De Lorenzis. Optimization of turning process through the analytic flank wear modelling. AIP Conference Proceedings, 1960:070008, 2018.doi: 10.1063/1.5034904.
[30] G. Xu and Z. Yang. Multiobjective optimization of process parameters for plastic injection molding via soft computing and grey correlation analysis. International Journal of Advanced Manufacturing Technology, 78(1–4):525–536, 2015. doi: 10.1007/s00170-014-6643-4.
[31] H. Juan, S.F. Yu, and B.Y. Lee. The optimal cutting parameter selection of production cost in HSM for SKD61 tool steels. International Journal of Machine Tools and Manufacturing, 43 (7):679–686, 2003. doi: 10.1016/S0890-6955(03)00038-5.
[32] U. Zuperl and F. Cus. Optimization of cutting conditions during cutting by using neural networks. Robotics and Computer-Integrated Manufacturing, 19(1-2):189–199, 2003. doi: 10.1016/S0736-5845(02)00079-0.
[33] P.E. Amiolemhen and A.O.A. Ibhadode. Application of genetic algorithms – determination of the optimal machining parameters in the conversion of a cylindrical bar stock into a continuous finished profile. International Journal of Machine Tools and Manufacture, 44(12-13):1403–1412, 2004. doi: 10.1016/j.ijmachtools.2004.02.001.
[34] E.O. Ezugwu, D.A. Fadare, J. Bonney, R.B. Da Silva, and W.F. Sales. Modeling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network. International Journal of Machine Tools and Manufacturing, 45(12-13):1375–1385, 2005. doi: 10.1016/j.ijmachtools.2005.02.004.
[35] P. Asokan, N. Baskar, K. Babu, G. Prabhakaran, and R. Saravanan. Optimization of surface grinding operation using particle swarm optimization technique. Journal of Manufacturing Science and Engineering, 127(4):885–892, 2015. doi: 10.1115/1.2037085.
[36] R.Q. Sardinas, M.R. Santana, and E.A. Brindis. Genetic algorithm-based multio-bjective optimization of cutting parameters in turning processes. Engineering Applications of Artificial Intelligence, 19(2):127–133, 2006. doi: 10.1016/j.engappai.2005.06.007.
[37] C. Jia and H. Zhu. An improved multiobjective particle swarm optimization based on culture algorithms. Algorithms, 10(2):46–56, 2017. doi: 10.3390/a10020046.
[38] C.A. Coello Coello, G.T. Pulido, and M.S. Lechuga. Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3):256–279, 2004. doi: 10.1109/TEVC.2004.826067.
[39] C.R. Raquel and P.C. Naval. An effective use of crowding distance in multiobjective particle swarm optimization. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, pages 257–264, Washington DC, USA, 2005. doi: 10.1145/1068009.1068047.
[40] G.T. Pulido and C.A. Coello Coello. Using clustering techniques to improve the performance of a multi-objective particle swarm optimizer. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pages 225-237, Seattle, USA, 2004. doi: 10.1007/978-3-540-24854-5_20.
[41] S. Mostaghim and J. Teich. Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO). In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium (SIS'03), pages 26–33, Indianapolis, IN, USA, 26 April 2003. doi: 10.1109/SIS.2003.1202243.
[42] J. Branke and S. Mostaghim. About selecting the personal best in multi-objective particle swarm optimization. In Proceedings of the Parallel Problem Solving From Nature (PPSN Ix) International Conference, pages 523–532, Reykjavik, Iceland, 9–13 September 2006. doi: 10.1007/11844297_53.
[43] T.M. Chenthil Jegan and D. Ravindran. Electrochemical machining process parameter optimization using particle swarm optimization. Computational Intelligence, 33:1019–1037, 2017. doi: 10.1111/coin.12139.
[44] C.P. Mohanty, S.S. Mahapatra, and M.R. Singh. A particle swarm approach for multi-objective optimization of electrical discharge machining process. Journal of Intelligent Manufacturing, 27:1171–1190, 2016. doi: 10.1007/s10845-014-0942-3.
[45] U. Natarajan, V.M. Periasamy, and R. Saravanan. Application of particle swarm optimisation in artificial neural network for the prediction of tool life. The International Journal of Advanced Manufacturing Technology, 31:871–876, 2007. doi: 10.1007/s00170-005-0252-1.
[46] A.K. Gandhi, S.K. Kumar, M.K. Pandey, and M.K. Tiwari. EMPSO-based optimization for inter-temporal multi-product revenue management under salvage consideration. Applied Soft Computing, 11(1):468–476, 2011. doi: 10.1016/j.asoc.2009.12.006.
[47] J.J. Yang, J.Z. Zhou, W. Wu, and F. Liu. Application of improved particle swarm optimization in economic dispatching. Power System Technology, 29(2):1–4, 2005.
[48] T. Sibalija, S. Pentronic, and D. Milovanovic. Experimental optimization of nimonic 263 laser cutting using a particle swarm approach. Metals, 9:1147, 2019. doi: 10.3390/met9111147.
[49] X. Luan, H. Younse, H. Hong, G.P. Peterson. Improving mechanical properties of PVA based nano composite using aligned single-wall carbon nanotubes. Materials Research Express, 6 (10):1050a6, 2019. doi: 10.1088/2053-1591/ab4058.
[50] H. Younes, R.A. Al-Rub, M.M. Rahman, A. Dalaq, A.A. Ghaferi, and T. Shah. Processing and property investigation of high-density carbon nanostructured papers with superior conductive and mechanical properties. Diamond and Related Materials, 68:109–117, 2016. doi: 10.1016/j.diamond.2016.06.016.
[51] G. Christensen, H. Younes, H. Hong, and G.P. Peterson. Alignment of carbon nanotubes comprising magnetically sensitive metal oxides by nonionic chemical surfactants. Journal of Nanofluids, 2(1): 25–28, 2013. doi: 10.1166/jon.2013.1031.
[52] H. Younes, M.M. Rahman, A.A. Ghaferi, and I. Saadat. Effect of saline solution on the electrical response of single wall carbon nanotubes-epoxy nanocomposites. Journal of Nanomaterials, 2017: 6843403, 2017 doi: 10.1155/2017/6843403.
[53] H. Younes, G. Christensen, L. Groven, H. Hong, and P. Smith. Three dimensional (3D) percolation network structure: Key to form stable carbon nano grease. Journal of Applied Research and Technology, 14(6):375–382, 2016. doi: 10.1016/j.jart.2016.09.002.
[54] J. Jerald, P. Asokan, G. Prabaharan, and R. Saravanan. Scheduling optimization of flexible manufacturing systems using particle swarm optimization algorithm. The International Journal of Advanced Manufacturig Technology, 25:964–971, 2005. doi: 10.1007/s00170-003-1933-2.
[55] M. Ghasemi, E. Akbari, A. Rahimnejad, S.E. Razavi, S. Ghavidel, and L. Li. Phasor particle swarm optimization: a simple and efficient variant of PSO. Soft Computing, 23:9701–9718, 2019. doi: 10.1007/s00500-018-3536-8.
[56] M.R. Singh and S.S. Mahapatra. A swarm optimization approach for flexible flow shop scheduling with multiprocessor tasks. The International Journal of Advanced Manufacturing Technology, 62(1–4), 267–277, 2012. doi: 10.1007/s00170-011-3807-3.
[57] H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, and Y. Nakanishi. A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Transactions on Power Systems, 15(4):1232–1239, 2000. doi: 10.1109/59.898095.
[58] F. Belmecheri, C. Prins, F. Yalaoui, and L. Amodeo. Particle swarm optimization algorithm for a vehicle routing problem with heterogeneous fleet, mixed backhauls, and time windows. Journal of Intelligent Manufacturing, 24(4):775–789, 2013. doi: 10.1007/s10845-012-0627-8.
[59] M. Bachlaus, M.K. Pandey, C. Mahajan, R. Shankar, and M.K. Tiwari. Designing an integrated multi-echelon agile supply chain network: a hybrid taguchi-particle swarm optimization approach. Journal of Intelligent Manufacturing, 19(6):747–761, 2008. doi: 10.1007/s10845-008-0125-1.
[60] B. Brandstatter and U. Baumgartner. Particle swarm optimization – mass-spring system analogon. IEEE Transactions on Magnetics, 38(2):997–1000, 2002. doi: 10.1109/20.996256.
[61] B. Kim and S. Son. A probability matrix-based particle swarm optimization for the capacitated vehicle routing problem. Journal of Intelligent Manufacturing, 23(4):1119–1126, 2012. doi: 10.1007/s10845-010-0455-7.
[62] C.H. Wu, D.Z. Wang, A. Ip, D.W. Wang, C.Y. Chan, and H.F. Wan. A particle swarm optimization approach for components placement inspection on printed circuit boards. Journal of Intelligent Manufacturing, 20(5):535–549, 2009. doi: 10.1007/s10845-008-0140-2.
[63] S.B. Raja and N. Baskar. Application of particle swarm optimization technique for achieving desired milled surface roughness in minimum machining time. Expert Systems with Applications, 39(5):5982–5989, 2012. doi: 10.1016/j.eswa.2011.11.110.
[64] N. Yusup, A.M. Zain, and S.Z.M. Hashim. Overview of PSO for optimizing process parameters of machining. Procedia Engineering, 29:914–923, 2012. doi: 10.1016/j.proeng.2012.01.064.
[65] R.L. Malghan, K.M.C. Rao, A.K. Shettigar, S.S. Rao, and R.J. D'Souza. Application of particle swarm optimization and response surface methodology for machining parameters optimization of aluminium matrix composites in milling operation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(9):2541–3553, 2017. doi: 10.1007/s40430-016-0675-7.
[66] A. Hadidi, A. Kaveh, B. Farahmand Azar, S. Talatahari, and C. Farahmandpour. An efficient optimization algorithm based on particle swarm and simulated annealing for space trusses. International Journal of Optimization in Civil Engineering, 3:377–395, 2011.
[67] T. Chaudhary, A.N. Siddiquee, A.K. Chanda, and Z.A. Khan. On micromachining with a focus on miniature gears by non conventional processes: a status report. Archive of Mechanical Engineering, 65(1):129–169, 2018. doi: 10.24425/119413.
[68] D. Kumar and K.K Singh. An experimental investigation of surface roughness in the drilling of MWCNT doped carbon/epoxy polymeric composite material. IOP Conference Series: Materials Science and Engineering, 149:012096, 2016. doi: 10.1088/1757-899X/149/1/012096.
[69] Niharika, B.P. Agrawal, I.A. Khan, and Z.A. Khan. Effects of cutting parameters on quality of surface produced by machining of titanium alloy and their optimization. Archive of Mechanical Engineering, 63(4):531–548, 2016. doi: 10.1515/meceng-2016-0030.
[70] N.S. Kumar, A. Shetty, Ashay Shetty, K. Ananth, and H. Shetty. Effect of spindle speed and feed rate on surface roughness of carbon steels in CNC turning. Procedia Engineering, 38:691– 697, 2012. doi: 10.1016/j.proeng.2012.06.087.
[71] E.T. Akinlabi, I. Mathoho, M.P. Mubiayi, C. Mbohwa, and M.E. Makhatha. Effect of process parameters on surface roughness during dry and flood milling of Ti-6A-l4V. In: 2018 IEEE 9th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT), pages 144–147, Cape Town, South Africa, 10-13 February 2018. doi: 10.1109/ICMIMT.2018.8340438.
[72] J.P. Davim, L.R. Silva, A. Festas, and A.M. Abrão. Machinability study on precision turning of PA66 polyamide with and without glass fiber reinforcing. Materials & Design, 30(2):228– 234, 2009. doi: 10.1016/j.matdes.2008.05.003.
[73] J. Cha, J. Kim, S. Ryu, and S.H. Hong. Comparison to mechanical properties of epoxy nanocomposites reinforced by functionalized carbon nanotubes and graphene nanoplatelets. Composites Part B: Engineering, 162:283–288, 2018. doi: 10.1016/j.compositesb.2018.11.011.
[74] R.V. Rao, P.J. Pawar, and R. Shankar. Multi-objective optimization of electrochemical machining process parameters using a particle swarm optimization algorithm. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 222(8):949–958, 2008. doi: 10.1243/09544054JEM1158.
[75] R. Farshbaf Zinati, M.R. Razfar, and H. Nazockdast. Surface integrity investigation for milling PA6/ MWCNT. Materials and Manufacturing Processes, 30(8):1035–1041, 2014. doi: 10.1080/10426914.2014.961473.
[76] I. Shyha, G.Y. Fu, D.H. Huo, B. Le, F. Inam, M.S. Saharudin, and J.C. Wei. Micro-machining of nano-polymer composites reinforced with graphene and nano-clay fillers. Key Engineering Materials, 786:197–205, 2018. doi: 10.4028/www.scientific.net/kem.786.197.
[77] G. Fu, D. Huo, I. Shyha, K. Pancholi, and M.S. Saharudin. Experimental investigation on micro milling of polyester/halloysite nano-clay nanocomposites. Nanomaterials, 9(7):917, 2019. doi: 10.3390/nano9070917.
Go to article

Authors and Affiliations

Prakhar Kumar Kharwar
1
Rajesh Kumar Verma
1
Nirmal Kumar Mandal
2
Arpan Kumar Mondal
2

  1. Department of Mechanical Engineering, Madan Mohan Malaviya University of Technology Gorakhpur, India.
  2. Department of Mechanical Engineering, National Institute of Technical Teachers’ Training and Research, Kolkata, India.

This page uses 'cookies'. Learn more