Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This article presents results of studies on multicriteria optimisation in the decopperisation process of flash smelting slags coming from the process of decopperisation at the "Głogów II" Copper Smelter. Measurements of viscosity were conducted using a high-temperature viscometer manufactured by Brookfield company. An addition in the form of calcium fluoride has an advantageous influence on decreasing the liquidus temperature of slag, and the effect of decreasing viscosity at the participation of calcium fluoride is significant. A motivation to conduct studies on viscosity of decopperised slags is an optimisation of the process of decopperisation at an improvement of this process parameters, i.e. the time of melt per one production cycle and consumption of electric power in the whole process. The efficiency of optimisation of the process course depends not only on an accepted criterion of the quality of controlling, a type of technological parameters, but also, to large extent, on characteristics and features of these parameters. CaCO3 currently added to the process of decopperisation efficiently decreases viscosity of flash slag, at the same time has influence on an increase of the yield of copper in alloy, but on the other hand, it increases the mass of slag, artificially under representing concentration of this metal. The article is completed with a conclusion of discussed issues, stating that a search for a new technological addition is still necessary,
Go to article

Authors and Affiliations

M. Wędrychowicz
A.W. Bydałek
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the idea of increasing the effectiveness of slag decopperisation in an electric furnace in the "Głogów II" Copper Smelter by replacing the currently added CaCO3with a less energy-intensive technological additive. As a result of this conversion, one may expect improved parameters of the process, including process time or power consumption per cycle. The incentives to optimize the process are the benefits of increasing copper production in the company and the growing global demand for this metal. The paper also describes other factors that may have a significant impact on the optimization of the copper production process. Based on the literature analysis, a solution has been developed that improves the copper production process. The benefits of using a new technology additive primarily include increased share of copper in the alloy, reduced production costs, reduced amount of power consumed per cycle and reduced time it takes to melt. At the conclusion of the paper, the issues raised are highlighted, stressing that mastering the slag slurry process in electric furnaces requires continuous improvement.

Go to article

Authors and Affiliations

M. Wędrychowicz
W. Wołczyński
A.W. Bydałek
Download PDF Download RIS Download Bibtex

Abstract

The article discusses the process of copper production in a slurry furnace and in a converter, with the indication of corrosion effects of the extractor. The furnace shaft and settling furnace of the flash furnace were analyzed. The basic factors determining the choice of singlestage technology of copper smelting in relation to the exploitation of refractory materials were indicated. The effects of dissolving the furnace lining material through slag have been presented. Structural analysis results using a scanning microscope are also included. The kinetics of destruction of ceramic materials under the influence of copper slag were evaluated. It has been shown that detailed analyzes are necessary in order to extend the time of furnace extensibility of furnaces in copper processes. The surface layer of the crucible softens due to saturation with slag reagents and is then washed out and moves in the solid form to the slag. The research in the article indicate not only the possibility of dissolution of the ceramic material in the molten slag, but also possibility of erosive activity of the slag on that material.
Go to article

Authors and Affiliations

M. Wędrychowicz
B. Basiura
A.W. Bydałek
Download PDF Download RIS Download Bibtex

Abstract

There are presents the internal recycling in anode furnace, in addition to mainly blister copper and converter copper. During the process

there arise the two types of semi-finished products intended for further pyro metallurgical processing: anode copper and anode slag. The

stream of liquid blister copper enters into the anode furnace treatment, in which the losses are recovered, e.g. copper, resulting from

oxidation and reduction of sulfides, oxides and the oxidation of metallic compounds of lead, zinc and iron. In the liquid phase there are

still gaseous states, which gives the inverse relationship relating to the solid phase, wherein the gases found an outlet in waste gas or

steam. The results of chemical analysis apparently differ from each other, because crystallite placement, the matrix structure and the

presence of other phases and earth elements are not compared, which can be regained in the process of electrorefining. One should not

interpret negatively smaller proportion of copper in the alloy, since during the later part of the production more elements can be obtained,

for example from sludge, such as platinum group metals and lanthanides. According to the research the quality of blister copper, to a large

extent, present in the alloy phase to many other elements, which can be recovered.

Go to article

Authors and Affiliations

A.W. Bydałek
P. Schlafka
K. Grządko
W. Wołczyński
P. Kwapisiński
M. Wędrychowicz
Download PDF Download RIS Download Bibtex

Abstract

Production processes at KGHM are complex and require from customers products of constantly higher quality at relatively lowest prices. Such situation results in an increase of the importance of optimisation of processes. As products and technologies change rapidly, technologists at the plant in Głogów have less time to achieve optimisation basing on own experiences. Analysing a particular process, we can e.g. detect occurring disturbances, find factors having an influence on quality problems, select optimal settings or compare various production procedures. Analysis of the course of production process is the basis of process optimisation. One optimisation in case of the process of decopperisation of flash slag can be a change of a technological additive to a less energy-consuming one, and its final result can be an improvement of the productivity index, a change of the relation between final effects and born expenditures, as well as optimisation of production costs.

Go to article

Authors and Affiliations

A.W. Bydałek
W. Wołczyński
M. Wędrychowicz
M. Holtzer
B. Basiura
P. Palimąka
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of research on the effect of added iron powder from plasma cutting on the mechanical properties and structure of a composite rod based on aluminum powder. The iron powder came from plasma cutting of steel elements and was handed over by the enterprise “AK Anatol” from Żary. One of the ways to dispose of it is to use it as a filler in aluminum composite rods. Research shows that Fe can be distributed in aluminum evenly, and increase in mechanical properties is achieved at the expense of only a slight increase in density. The proposed system does not reduce the amount of waste produced by plasma cutting but finds a use for some of it. The sintering point of the powder required a strongly reducing atmosphere (PO2 < 10–50 atm) which seems virtually unachievable under laboratory conditions. The reinforcing mechanism is related to the fragmentation of the matrix aggregate particles and the uniform distribution of Fe particles in the aluminum matrix.

Go to article

Authors and Affiliations

M. Wędrychowicz
A.W. Bydałek
P. Migas
ORCID: ORCID
T. Skrzekut
P. Noga
P. Madej
A. Kałasznikow

This page uses 'cookies'. Learn more