Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this article is to present the results of research aimed at confirmation whether it is possible to form an intermediate band in GaAs implantation with H+ ions. The obtained results were discussed with particular emphasis on possible applications in the photovoltaic industry. As it is commonly known, the idea of intermediate band solar cells reveals considerable potential as the most fundamental principle of the next generation of semiconductors solar cells. In progress of the research, a series of GaAs samples were subjected to poly-energy implantation of H+ ions, followed by high-temperature annealing. Tests were conducted using thermal admittance spectroscopy, under conditions of variable ambient temperature, measuring signal frequency in order to localize deep energy levels, introduced by ion implantation. Activation energy ΔE was determined for additional energy levels resulting from the implantation of H+ ions. The method of determining the activation energy value is shown in Fig. 2 and the values read from it are σ0 = 10−9 (Ω·cm)−1 for 1000/T0 = 3.75 K−1 and σ1 = 1.34 × 10−4 (Ω·cm)−1 for 1000/T1 = 2.0 K−1. As a result, we obtain ΔE ≈ 0:58 eV. It was possible to identify a single deep level in the sample of GaAs implanted with H+ ions. Subsequently, its location in the band gap was determined by estimating the value of ΔE. However, in order to confirm whether the intermediate band was actually formed, it is necessary to perform further analyses. In particular, it is necessary to implement a new analytical model, which takes into consideration the phenomena associated with the thermally activated mechanisms of carrier transport as it was described in [13]. Moreover, the influence of certain parameters of ion implantation, post-implantation treatment and testing conditions should also be considered.

Go to article

Authors and Affiliations

Paweł Węgierek
Justyna Pietraszek
Download PDF Download RIS Download Bibtex

Abstract

The article presents the assumptions, characteristics and description of the implementation of a pilot system for on-line monitoring of partial discharges in heads of the high-voltage cable lines. The main purpose of the implementation was to increase the reliability of cable line heads by equipping them with a system of continuous assessment of technical condition with direct transmission of measurement data and alarms to the SCADA system. In order to achieve the assumed goal, unconventional methods for measuring partial discharges were used, the application of which does not require disconnecting the line from the voltage. The implementation was carried out on an active 110 kV high voltage cable line in the area of activity of one of the Distribution System Operators.

Go to article

Authors and Affiliations

Michał Konarski
Paweł Węgierek
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of laboratory measurements of Ud breakdown voltages in a high-voltage vacuum insulating system for different pressures, contact gaps, type of electrode contacts and type of residual gas inside the discharge chamber. First of all, the electrical strength of the discharge chamber with a contact system terminated with contact pads made of W 70Cu 30 and Cu 75Cr 25 material was compared for selected values of contact gaps. It was found that below a pressure of p = 3.0 x 10 -1 Pa the electrical strength reaches an approximately constant value for each of the set contact gaps d. Analytical relationships were determined to calculate this value for each of the contact pads used. Above a pressure of p = 3.0 x 10 -1 Pa, the measured values of Ud breakdown voltages decrease sharply. The values of breakdown voltages in the discharge chamber with residual gases in the form of air, argon, neon and helium were also determined for selected values of contact gaps d. Depending on the residual gases used, significant differences were noted in the values of pressure p at which the loss of insulating properties in the discharge chamber occurred. These values were 3.3 x 10 -1 Pa for argon, 4.1 x 10 -1 Pa for air, 6.4 x 10 -1 Pa for neon, and 2.55 x 10 0 Pa for helium, respectively.
Go to article

Authors and Affiliations

Michał Lech
1
ORCID: ORCID
Paweł Węgierek
1
ORCID: ORCID

  1. Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka 38A str., 20-618 Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents methodology for testing the electric strength of vacuum chambers designed for modern medium voltage switchgear developed by the authors, using two innovative test stands designed and constructed by the research team above. Verification of the correctness of operation of the test stands, as well as the validity of the developed methodology was carried out by performing a series of tests. It was determined that below certain pressure values in the tested chamber (from about 5.0×10 0 Pa for station 1 and for about 4.0×10 -1 Pa for station 2), the electric strength maintains a constant value, which guarantees stable operation of the vacuum chamber. The values of the total measurement uncertainty for the electric strength tests were also estimated.

Go to article

Authors and Affiliations

Paweł Węgierek
ORCID: ORCID
Michał Lech
ORCID: ORCID
Czesław Kozak
Justyna Pastuszak

This page uses 'cookies'. Learn more