Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A theoretical formula for large-diameter rock-socket depth is developed to support pail embedding in a large bridge pile foundation project. There is a horizontal additional stress concentration at the place where the soil around the rock-socketed pile meets the soil layer under the horizontal load. When the rock-socketed tip stress and bending moment of the pile are relatively small, the pile shows favourable embedment effect and the pile foundation can be considered safe. The function curve of soil resistance around the pile under the action of horizontal force was obtained by finite element analysis. The force characteristics reveal the depth of the largediameter rock-socketed pile under the horizontal load. As the rock-socketed pile rotates under the action of horizontal force, the rock mass resistance around the pile changes according to the cosine. The distribution of pileside soil resistance is proportional to the displacement and distributed according to the sine. A comprehensive correction coefficient of pile shaft resistance beta is introduced to deduce the theoretical formula of the depth r h of the large-diameter rock-socketed pile embedded in the bedrock. It is verified through both experiments and numerical analysis.
Go to article

Authors and Affiliations

Yanfeng F. Li
ORCID: ORCID
Jihe Zhao
1
ORCID: ORCID
Ying Xiong
1
ORCID: ORCID
Qinghe Wang
2
ORCID: ORCID

  1. DSc., School of Transportation Engineering, Shenyang Jianzhu University, Shenyang 110168, China
  2. Prof., PhD., School of Transportation Engineering, Shenyang Jianzhu University, Shenyang 110168, China
Download PDF Download RIS Download Bibtex

Abstract

The shear lag effect of the steel box girder section in a self-anchored suspension bridge was investigated in this study. Finite element analysis software Midas Civil was used to discretize the girder under analysis into space plate elements and establish a plate element model. The law of shear lag in the longitudinal direction of the girder in the construction and completion stages was determined accordingly. The shear lag coefficient appears to change suddenly near the side support, middle support, side cable anchorage area, and near the bridge tower support of the steel box girder under the imposed load. The most severe shear lag effect is located near the side support and near the side cable anchorage area. Steel box girder sections are simulated before and after system conversion to analyze the shear lag coefficient in the bridge construction stage. The results show that the shear lag coefficient markedly differs before versus after system conversion due to the different stress mechanisms. The finite element analysis results were validated by comparison with the results of an analysis via analogous rod method.
Go to article

Authors and Affiliations

Yanfeng Li
1
ORCID: ORCID
Ying He
2
Longsheng Bao
1
ORCID: ORCID
Baoyun Sun
1
ORCID: ORCID
Qinghe Wang
1
ORCID: ORCID

  1. Prof., PhD., School of Transportation Engineering, Shenyang Jianzhu University, Shenyang 110168, China
  2. DSc., School of Transportation Engineering, Shenyang Jianzhu University, Shenyang 110168, China

This page uses 'cookies'. Learn more