Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 15
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Vaccination is a common routine for prevention and control of human and animal diseases by inducing antibody responses and cell-mediated immunity in the body. Through vaccinations, smallpox and some other diseases have been eradicated in the past few years. The use of a patho- gen itself or a subunit domain of a protein antigen as immunogens lays the basis for traditional vaccine development. But there are more and more newly emerged pathogens which have expe- rienced antigenic drift or shift under antibody selective pressures, rendering vaccine-induced im- munity ineffective. In addition, vaccine development has been hampered due to problems includ- ing difficulties in isolation and culture of certain pathogens and the antibody-dependent enhancement of viral infection (ADE). How to induce strong antibody responses, especially neu- tralizing antibody responses, and robust cell-mediated immune responses is tricky. Here we re- view the progress in vaccine development from traditional vaccine design to reverse vaccinology and structural vaccinology and present with some helpful perspectives on developing novel vac- cines.

Go to article

Authors and Affiliations

Y.B. Wang
L.P. Wang
P. Li
Download PDF Download RIS Download Bibtex

Abstract

Lipopolysaccharide (LPS), a core part of gram-negative bacteria, is crucial for inducing an inflammatory response in living things. In the current study, we used LPS from Salmonella to stimulate chicken macrophages (HD11). Proteomics was used to investigate immune-related proteins and their roles further. Proteomics investigation revealed 31 differential expression proteins (DEPs) after 4 hours of LPS infection. 24 DEPs expressions were up-regulated, while seven were down-regulated. In this investigation, ten DEPs were mainly enriched in S. aureus infection, complement, and coagulation cascades, which were all implicated in the inflammatory response and clearance of foreign pathogens. Notably, complement C3 was shown to be up-regulated in all immune-related pathways, indicating that it is a potential protein in this study. This work contributes to a better understanding and clarification of the processes of Salmonella infection in chickens. It might bring up new possibilities for treating and breeding Salmonella-infected chickens.
Go to article

Authors and Affiliations

S. Li
1
Y. Chen
1
W. Xue
1
Q. Wang
1
Z. Huai
1
C. An
1
Y. Wang
1 2
ORCID: ORCID

  1. School of Life Science, Bengbu Medical College, Donghai street No.2600, Bengbu, Anhui, China
  2. Anhui Province Key Laboratory of Translational Cancer Research, Donghai street No.2600, Bengbu Medical College, Bengbu, China
Download PDF Download RIS Download Bibtex

Abstract

Pseudorabies (PR) outbreaks have devastated many swine farms in several parts of China since late 2011. The outbreak-associated pseudorabies virus (PRV) variant strains exhibited some typical amino acid changes in glycoprotein E (gE), a diagnostic antigen used for discriminating between PRV-infected and vaccinated animals (DIVA). To counteract the potential impact of epitope variations on current serological diagnostics of PRV, we produced monoclonal antibodies (mAbs) against gE protein of one representative PRV variant strain and developed a blocking immunoperoxidase monolayer assay (b-IPMA) for DIVA. The b-IPMA was based on the inhibition of binding between PRV-infected cells and mAb by PRV-specific antibodies present in clinical swine sera and was validated by comparison with a commercial PRV gpI Antibody Test Kit (IDEXX Laboratories, USA). The diagnostic sensitivity, diagnostic specificity and agreement were determined to be 99.25%, 98.18% and 99.02% respectively upon testing 509 serum samples. b-IPMA detected only PRV-specific antibodies and showed no cross- -reactivity with antibodies elicited by gE-deleted vaccine or other common swine pathogens. Thus, b-IPMA has the potential to be used for high-throughput screening of PRV-infected animals in veterinary clinics.

Go to article

Authors and Affiliations

Y.B. Wang
Y.H. Li
Q.M. Li
W.T. Xie
C.L. Guo
J.Q. Guo
R.G. Deng
G.P. Zhang
Download PDF Download RIS Download Bibtex

Abstract

In the present paper, the excavation of the energetic approach that estimates the fatigue crack initiation life of metal is conducted for H62 brass. The benefit of the energetic approach is the division of the actual applied strain range Δε into two parts, that is, a damage strain range Δεd that induces fatigue damage within the metal, and an undamaged strain range Δεc, which does not produce fatigue damage of the metal and corresponds to theoretical strain fatigue limit. The brightness of this approach is that the undamaged strain range Δεc can be estimated by the fundamental conventional parameters of metal in tensile test. The result indicated that the fatigue crack initiation life of H62 brass can be estimated by this approach successfully.
Go to article

Authors and Affiliations

M. Zheng
1
ORCID: ORCID
S. Zhang
1
ORCID: ORCID
X.J. Peng
1
ORCID: ORCID
Y. Wang
1
ORCID: ORCID

  1. Northwest University, School of Chemical Engineering, Xi’an 710069, P. R. China
Download PDF Download RIS Download Bibtex

Abstract

In this study, a SYBR Green-based real-time quantitative polymerase chain reaction (qPCR) assay was developed for rapid detection of porcine parvovirus (PPV) 6. Primer pairs targeting the conserved regions of PPV6 Capsid gene were designed. Sensitivity analyses revealed the lowest detection limit of the SYBR Green-based real-time PCR assay to be 47.8 copies/μL, which indicated it was 1000 times higher than that found in the conventional PCR investigations. This assay was specific and showed no cross-species amplification with other six porcine viruses. The assay demonstrated high repeatability and reproducibility; the intra- and inter-assay coefficients of variation were 0.79% and 0.42%, respectively. The positive detection rates of 180 clinical samples with SYBR Green-based real-time PCR and conventional PCR were 12.22% (22/180) and 4.44% (8/180), respectively. Our method is sensitive, specific, and reproducible. The use of SYBR Green-based real-time PCR may be suitable for the clinical detection and epidemiological investigation of PPV6.

Go to article

Authors and Affiliations

P. Sun
C.X. Bai
D. Zhang
J. Wang
K.K. Yang
B.Z. Cheng
Y.D. Li
Y. Wang
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Telomerase reverse transcriptase (TERT) vectors were transfected into bone marrow mesen- chymal stem cells (BMSCs) which were then cultured and selected to establish TERT-BMSC cell lines whilst sequencing BMSCs and TERT-BMSCs via transcriptome in this study to explore their regulatory mechanism and effect on osteogenic differentiation after TERT ectopic expres- sion in sheep BMSCs. After sequencing and analysing differential genes, PI3K/Akt signalling pathway related to osteogenic differentiation was investigated. Western blot was used before and after applying the PI3K/Akt signalling pathway inhibitor LY294002 to detect protein expression levels of AKT and p-AKT. On the twenty-first day of osteogenic differentiation, RT-qPCR and Western blot were used to detect mRNA and protein expression levels of RUNX2 and OPN and alizarin red staining was utilised to analyse calcium salt deposition. Results showed that pro- tein expression levels of AKT and p-AKT were significantly up-regulated, mRNA and protein expression levels of RUNX2 and OPN increased and calcium salt deposition increased after ectopic expression of TERT. After applying LY294002, the protein expression of AKT and p-AKT was down-regulated, mRNA and protein expression levels of RUNX2 and OPN were reduced and calcium salt deposition was reduced. These results confirmed the stable integration and expression of the exogenous TERT gene in BMSCs to promote the differentiation of BMSC osteoblasts, which may be mediated by the PI3K/Akt signalling pathway.

Go to article

Authors and Affiliations

X. Zhu
L. Zhou
Z. Liu
X. Chen
L. Wei
Z. Zhang
Y. Liu
Y. Zhu
Y. Wang
ORCID: ORCID
X. Yang
Y. Han
Download PDF Download RIS Download Bibtex

Abstract

A novel avian orthoreovirus (N-ARV) variant characterized with obvious arthritis and synovial inflammation, was isolated from Shandong, China in May 2016. It caused chicken poor growth and enormous economic losses to the poultry industry of China. However, there are few effective methods for detecting the antibody levels of N-ARV. In this study, a viral structural protein σC was expressed using the prokaryotic expression vector pET32a (+). The target protein was obtained by inducing for 6 hours at an IPTG concentration of 0.6mM. The optimal dilution of the coating antigen and serum antibody were determined to be 1000 fold and 10 fold respectively. A specificity test showed that there was no positive reactivity between N-ARV and other pathogens, and when the positive serum was diluted 100 times detection results were still checkable. The repeatability of this method was determined by the inter assay and intra assay tests with variability ranging from 4.85% to 7.93%. In conclusion, this indirect enzyme linked immunosorbent assay (ELISA) will be useful for large-scale serological surveys and monitoring antibody levels in N-ARV infection.
Go to article

Bibliography

Adair BM, Burns K, McKillop ER (1987) Serological studies with reoviruses in chickens, turkeys and ducks. Comp Pathol 97:495-501.
Ayalew LE, Gupta A, Fricke J, Ahmed KA, Popowich S, Lockerbie B (2017) Phenotypic, genotypic and antigenic characterization of emerging avian reoviruses isolated from clinical cases of arthritis in broilers in saskatchewan. Scientific Reports 7: 3565.
Benavente J, Martinezcostas J (2007) Avian reovirus: structure and biology. Virus Res 123:105–119. Bodelón G, Labrada L, Martønez-Costas J (2001) The avian reovirus genome segment S1 is a functionally tricistronic gene that expresses One structural and two nonstructural proteins in infected cells. Virology 290:181-191.
Caterina, KM, Frasca S, Girshick T, Khan M (2004) Development of a multiplex pcr for detection of avian adenovirus, avian reovirus, infectious bursal disease virus, and chicken anemia virus. Molecular and Cellular Probes 18: 293-298.
Curtis PE, Al-Mufarrej SI, Jones RC, Morris J, Sutton PM (1992) Tenosynovitis in young pheasants associated with reovirus, staphylococci and environmental factors. Veterinary Record 131: 293.
Dandár E, Bálint Á, Kecskeméti S (2013) Detection and characterization of a divergent avian reovirus strain from a broiler chicken with central nervous system disease. Arch Virol. 158: 2583-2588.
Dutta SK , Pomeroy BS (1967) Isolation and characterization of an enterovirus from baby chicks having an enteric infection II. Physical and chemical characteristics and ultrastructure. Avian Dis 11: 9-15.
Fahey JE , Crawley JF (1954) Studies On Chronic Respiratory Disease Of Chickens II. Isolation of A Virus. Can J Comp Med Vet Sci 18: 13-21.
Guo K, Dormitorio TV, Ou SC Giambrone JJ (2011) Development of TaqMan real-time RT-PCR for detection of avian reoviruses. Virol Methods 177: 75-79.
Heggen-Peay CL, Qureshi MA, Edens FW (2002) Isolation of a reovirus from poult enteritis and mortality syndrome and its pathogenicity in turkey poults. Avian Dis 100: 102-105
Howell SH, Walker LL ( 1972) Synthesis of DNA in toluenetreated Chlamydomonas reinhardi (DNA replication-chloroplast DNA-cell cycle-electron microscopy). Proceedings of the National Academy of Sciences of the United States of America 69: 490-494.
Ide PR, Dewitt W (1979) Serological incidence of avian reovirus infection in broiler-breeders and progeny in Nova Scotia. Canadian Veterinary Journal La Revue Vétérinaire Canadienne 20: 348.
Jones RC, Kibenge F (1984) Reovirus-induced tenosynovitis in chickens: The effect of breed. Avian Pathol 13: 511-528.
Jones RC, Savage CE (1987) Effects of experimental immunosuppression on reovirus-induced tenosynovitis in light- -hybrid chickens. Avian Pathol 14: 51-58.
Lin FQ, Qi-Lin HU, Chen SY (2007) Diagnosis of Muscovy Duck Reovirus Disease by Semi-Nested RT-PCR. Journal of South China Agricultural University 16: 61-68.
Liu HJ, Giambrone JJ, Nielsen BL (1997) Molecular characterization of avian reoviruses using nested PCR and nucleotide sequence analysis. J Virol Methods 65: 159-167.
Liu Y, Wan W, Gao D ( 2016) Genetic characterization of novel fowl aviadenovirus 4 isolates from outbreaks of hepatitis-hydropericardium syndrome in broiler chickens in China. Emerg Microbes Infect 5: 117.
Marks M , Marks JL (2016) Viral arthritis. Clinical Medicine 1: 16-19. Mor SK, Sharafeldin TA, Porter RE (2014) Molecular characterization of L class genome segments of a newly isolated turkey arthritis reovirus. Infect Genet Evol 27: 193-201.
Mor SK, Sharafeldin TA, Porter RE (2013) Isolation and characterization of a turkey arthritis reovirus. Avian Dis 57: 97-103.
Noh JY, Lee DH, Lim TH, Lee J H, Day JM, Song CS (2018) Isolation and genomic characterization of a novel avian orthoreovirus strain in Korea, Arch Virol 163: 1-10.
Victor PT, Darko M, Tom I, Frank V, Faizal A (2018) Molecular characterization of emerging avian reovirus variants isolated from viral arthritis cases in western canada 2012-2017 based on partial sigma (σ)c gene. Virology 522: 138-146.
Palya V, Glávits R, Dobos-Kovács M, É Ivanics, Nagy, E, K Bányai (2003) Reovirus identified as cause of disease in young geese. Avian Pathol 32: 129-138.
Xie L, Xie Z, Wang S, Deng X, Xie Z (2020) Study of the activation of the pi3k/akt pathway by the motif of σa and σns proteins of avian reovirus. Innate Immunity 26: 4.
Rendón-Anaya M, Montero-Vargas JM, Saburido-Álvarez S, Vlasova A, Herrera-Estrella A (2017) Genomic history of the origin and domestication of common bean unveils its closest sister species. Genome Biology 18: 60.
Sharafeldin TA, Mor SK, Bekele AZ, Verma H, Noll SL, Goyal SM (2015) Experimentally induced lameness in turkeys inoculated with a newly emergent turkey reovirus. Veterinary Research 46: 11.
Shien JH, Yin HS , Lee LH (2000) An enzyme-linked immunosorbent assay for the detection of antibody to avian reovirus by using protein σ B as the coating antigen. Res Vet Sci. 65: 60
Wen L, Hwh B, Ming H, Long H, Hjlb C (2004) Avian reovirus σc protein induces apoptosis in cultured cells. Virology 321: 65-74.
Tang Y, Lu H (2015) Genomic characterization of a broiler reovirus field strain detected in pennsylvania. Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases 31: 177-182.
Tang Y, Lin L, Sebastian A, Lu H (2016) Detection and characterization of two co-infection variant strains of avian orthoreovirus (ARV) in young layer chickens using next-generation sequencing (NGS). Sci Rep 6: 24519.
Vasserman Y, Eliahoo D, Hemsani E (2004) The influence of reovirus sigma C protein diversity on vaccination efficiency. Avian Dis 47: 28-30
Vindevogel H, Meulemans G, Pastoret PP (1982) Reovirus infection in the pigeon. Ann Rech Vet Rinaires Ann Vet Res 13: 149.
Yun T, Chen H, Yu B (2015) Development and application of an indirect ELISA for the detection of antibodies to novel duck reovirus. Journal of Virological Methods 220: 55-59.
Go to article

Authors and Affiliations

H. Liu
1 2 3
ORCID: ORCID
Z. Wei
1 2 3
J. Yang
1 2 3
Y. Wang
1 2 3
ORCID: ORCID
J. Hu
1 2 3
Y. Tang
1 2 3
Y. Diao
1 2 3

  1. College of Veterinary Medicine, Shandong Agricultural University, No.61 Daizong Street, Tai’an 271018, China
  2. Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No.61 Daizong Street, Tai’an 271018, China
  3. Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, No.61 Daizong Street, Tai’an 271018, China
Download PDF Download RIS Download Bibtex

Abstract

A proof of concept for using paper test as a suitable method in the production of monoclonal antibodies (MAbs) is reported. The paper test which detects antibodies against porcine circovirus type 2 (PCV2) using colloidal gold-labelled capsid protein as the antigen probe was applied exclusively in the screening of anti-PCV2 MAbs. It allowed the detection of 118 single cell clones within 30 min using naked eyes. MAbs with specific binding to authentic epitopes on the virus were selected using a blocking strategy in which the antibody was pre-incubated with PCV2 viral sample before applying to the test paper. Five hybridomas secreting MAbs against the capsid protein were obtained, with only three of them capable of binding to PCV2. The results were validated and confirmed using enzyme-linked immunosorbent assay and immunofluorescence assay. The paper test is simple, rapid, and independent on professional technicians and proves to be an excellent approach for the screening of MAbs against specific targets.
Go to article

Bibliography


Arsawiset S, Teepoo S (2020) Ready-to-use, functionalized paper test strip used with a smartphone for the simultaneous on-site detection of free chlorine, hydrogen sulfide and formaldehyde in wastewater. Anal Chim Acta 1118: 63-72.
Chae C (2004) Postweaning multisystemic wasting syndrome: a review of aetiology, diagnosis and pathology. Vet J 168: 41-49.
Griol A, Peransi S, Rodrigo M, Hurtado J, Bellieres L, Ivanova T, Zurita D, Sánchez C, Recuero S, Hernández A, Simón S, Balka G, Bossis I, Capo A, Camarca A, D’Auria S, Varriale A, Giusti A (2019) Design and development of photonic biosensors for swine viral diseases detection. Sensors (Basel) 19: 3985.
Huang L, Tian S, Zhao W, Liu K, Ma X, Guo J (2020) Multiplexed detection of biomarkers in lateral-flow immunoassays. Analyst 145: 2828-2840.
Huang L, Wei Y, Xia D, Liu D, Zhu H, Wu H, Feng L, Liu C (2019) A broad spectrum monoclonal antibody against porcine circovirus type 2 for antigen and antibody detection. Appl Microbiol Biotechnol 103: 3453-3464.
Jin Q, Yang J, Lu Q, Guo J, Deng R, Wang Y, Wang S, Wang S, Chen W, Zhi Y, Wang L, Yang S, Zhang G (2012) Development of an immunochromatographic strip for the detection of antibodies against porcine circovirus-2. J Vet Diagn Invest 24: 1151-1157.
Johnson J, Higgins A, Navarro A, Huang Y, Esper FL, Barton N, Esch D, Shaw C, Olivo PD, Miao LY (2011) Subtyping influenza A virus with monoclonal antibodies and an indirect immunofluorescence assay. J Clin Microbiol 50: 396-400.
Kaushik A, Tiwari S, Dev Jayant R, Marty A, Nair M (2016) Towards detection and diagnosis of Ebola virus disease at point-of-care. Biosens Bioelectron 75: 254-272.
Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 495-497.
Li G, Wang A, Chen Y, Sun Y, Du Y, Wang X, Ding P, Jia R, Wang Y, Zhang G (2021) Development of a colloidal gold-based immunochromatographic strip for rapid detection of severe acute respiratory syndrome coronavirus 2 spike protein. Front Immunol 12: 635677.
Li H, Yang J, Bao D, Hou J, Zhi Y, Yang Y, Ji P, Zhou E, Qiao S, Zhang G (2017) Development of an immunochromatographic strip for detection of antibodies against porcine reproductive and respiratory syndrome virus. J Vet Sci 18: 307-316.
Liu C, Feng H, Liu Y, Chen Y, Yang S, Deng R, Zhang G (2020) Soluble FMDV VP1 proteins fused with calreticulin expressed in Escherichia coli under the assist of trigger factor16 (Tf16) formed into high immunogenic polymers. Int J Biol Macromol 155: 1532-1540.
Liu G, Qiao X, Chang C, Hua T, Wang J, Tang B, Zhang D (2020) Reduction of postweaning multisystemic wasting syndrome-associated clinical symptoms by virus-like particle vaccine against porcine parvovirus and porcine circovirus type 2. Viral Immunol 33: 444-456.
Liu X, Yang J, Li Q, Wang Y, Wang Y, Li G, Shi J, Ding P, Guo J, Deng R, Zhang G (2020) A strip test for the optical determination of influenza virus H3 subtype using gold nanoparticle coated polystyrene latex microspheres. Mikrochim Acta 187: 306.
Ma Y, Ni C, Dzakah EE, Wang HY, Kang K, Tang SX, Wang JH, Wang JF (2016) Development of monoclonal antibodies against HIV-1 p24 protein and its application in colloidal gold immunochromatographic assay for HIV-1 detection. Biomed Res Int 2016: 6743904.
Meyers C, Mo XB, Li XD, Yin B, Deng JH, Tian KG, Yuan A (2019) Structural roles of PCV2 capsid protein N-terminus in PCV2 particle assembly and identification of PCV2 type-specific neutralizing epitope. PLoS Pathog 15: e1007562.
Montagnese C, Barattini P, Giusti A, Balka G, Bruno U, Bossis I, Gelasakis A, Bonasso M, Philmis P, Dénes L, Peransi S, Rodrigo M, Simón S, Griol A, Wozniakowski G, Podgorska K, Pugliese C, Nannucci L, D’Auria S, Varriale A (2019) A diagnostic device for in-situ detection of swine viral diseases: the SWINOSTICS project. Sensors (Basel) 19: 407.
Na G, Hu X, Yang J, Sun Y, Kwee S, Tang L, Xing G, Xing Y, Zhang G (2020) Colloidal gold-based immunochromatographic strip assay for the rapid detection of bacitracin zinc in milk. Food Chem 327: 126879.
Nannucci L, Barattini P, Bossis I, Woźniakowski G, Balka G, Pugliese C (2020) Point-of-service diagnostic technology for detection of swine viral diseases. J Vet Res 64: 15-23.
Shang SB, Jin YL, Jiang XT, Zhou JY, Zhang X, Xing G, He JL, Yan Y (2009) Fine mapping of antigenic epitopes on capsid proteins of porcine circovirus, and antigenic phenotype of porcine circovirus type 2. Mol Immunol 46: 327-334.
Wang Y, Guo J, Qiao S, Li Q, Yang J, Jin Q, Zhang G (2016) GP5 protein-based ELISA for the detection of PRRSV antibodies. Pol J Vet Sci 19: 495-501.
Warren AD, Kwong GA, Wood DK, Lin KY, Bhatia SN (2014) Point-of-care diagnostics for noncommunicable diseases using synthetic urinary biomarkers and paper microfluidics. Proc Natl Acad Sci U S A 111: 3671-3676.
Yang X, Yang J, Wang Y, Li L, Sun Z, Yue Z, Tian F, He L, Hu X (2018) A lateral flow immunochromatographic strip test for rapid detection of oseltamivir phosphate in egg and chicken meat. Sci Rep 8: 16680.
Zhang G, Guo J, Wang X (2009) Immunochromatographic lateral flow strip tests. Methods Mol Biol 504: 169-183.
Zhang G, Wang X, Yang J, Yang Y, Xing G, Li Q, Zhao D, Chai S, Guo J (2006) Development of an immunochromatographic lateral flow test strip for detection of beta-adrenergic agonist Clenbuterol residues. J Immunol Methods 312: 27-33.
Go to article

Authors and Affiliations

Q.Y. Jin
1
L.L. Feng
2
Y.B. Wang
3
P. Li
4
J.F. Yang
1
M. Teng
1
S.J. Chai
1
G.X. Xing
1
G.P. Zhang
1

  1. Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
  2. Institute of Agricultural Economics and Information, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
  3. School of Public Health, Xinxiang Medical University, Xinxiang 453003, PR China
  4. School of Life Sciences and Basic Medicine, Xinxiang University, Xinxiang 453003, PR China
Download PDF Download RIS Download Bibtex

Abstract

In this study, we developed a SYBR Green I real-time PCR method for the rapid and sensitive detection of novel porcine parvovirus 7 (PPV7). Specific primers were designed based on the highly conserved region within the Capsid gene of PPV7. The established method was 1,000 times more sensitive than the conventional PCR method and had a detection limit of 35.6 copies. This method was specific and had no cross-reactions with PCV2, PCV3, PRV, PEDV, PPV1, and PPV6. Experiments testing the intra and interassay precision demonstrated a high reproducibility. Testing the newly established method with 200 clinical samples revealed a detection rate up to 17.5% higher than that of the conventional PCR assay. The established method could provide technical support for clinical diagnosis and epidemiological investigation of PPV7.
Go to article

Authors and Affiliations

Y.D. Li
1
Z.D. Yu
2
C.X. Bai
2
D. Zhang
2
P. Sun
2
M.L Peng
2
H. Liu
3
ORCID: ORCID
J. Wang
4
Y. Wang
2
ORCID: ORCID

  1. Municipal Key Laboratory of Virology, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, PR China
  2. Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
  3. Anhui Animal Diseases Prevention and Control Center and Key Laboratory of Veterinary Pathobiology and Disease Prevention and Control of Anhui Province, Hefei 230091, PR China
  4. Animal Husbandry Base Teaching and Research Section, College of Animal Science and Technology, Hebei North University, Hebei 075000, PR China
Download PDF Download RIS Download Bibtex

Abstract

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a major public health concern. Nucleocapsid (N) protein is the most abundant structural protein on SARS-CoV-2 virions and induces the production of antibodies at the early stage of infection. Large-scale preparation of N protein is essential for the development of immunoassays to detect antibodies to SARS-CoV-2 and the control of virus transmission. In this study, expression of water-soluble N protein was achieved through inducing protein expression at 25°C with 0.5 mM IPTG for 12 h. Western blot and ELISA showed that recombinant N protein could be recognized by sera collected from subjects immunized with Sinovac inactivated SARS-CoV-2 vaccine. Four monoclonal antibodies namely 2B1B1, 4D3A3, 5G1F8, and 7C6F5 were produced using hybridoma technology. Titers of all four monoclonal antibodies in ELISA reached more than 1.28×10 6.0. Moreover, all monoclonal antibodies could react specifically with N protein expressed by transfection of pcDNA3.1-N into BHK-21 cells in IPMA and IFA. These results indicated that water-soluble N protein retained high immunogenicity and possessed the same epitopes as that of native N protein on virions. In addition, the preparation of water-soluble N protein and its monoclonal antibodies laid the basis for the development of immunoassays for COVID-19 detection.
Go to article

Bibliography

1. Bai Z, Cao Y, Liu W, Li J (2021) The SARS-CoV-2 nucleocapsid protein and its role in viral structure, biological functions, and a poten-tial target for drug or vaccine mitigation. Viruses 13: 1115.
2. Bates TA, Weinstein JB, Farley S, Leier HC, Messer WB, Tafesse FG (2021) Cross-reactivity of SARS-CoV structural protein antibod-ies against SARS-CoV-2. Cell Rep 34: 108737.
3. Chen K, Xiao F, Hu D, Ge W, Tian M, Wang W, Pan P, Wu K, Wu J (2020) SARS-CoV-2 nucleocapsid protein interacts with RIG-I and represses RIG-mediated IFN-β production. Viruses 13: 47.
4. Chen Y, Liu Q, Guo D (2020) Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol 92: 418-423.
5. Clementi N, Ghosh S, De Santis M, Castelli M, Criscuolo E, Zanoni I, Clementi M, Mancini N (2021) Viral respiratory pathogens and lung injury. Clin Microbiol Rev 34: e00103-00120.
6. Guo L, Ren L, Yang S, Xiao M, Chang D, Yang F, Dela Cruz CS, Wang Y, Wu C, Xiao Y, Zhang L, Han L, Dang S, Xu Y, Yang QW, Xu SY, Zhu HD, Xu Y,C Jin Q, Sharma L, Wang L, Wang J (2020) Profiling early humoral response to diagnose novel corona-virus disease (COVID-19). Clin Infect Dis 71: 778-785.
7. Gutiérrez-González M, Farías C, Tello S, Pérez-Etcheverry D, Romero A, Zúñiga R, Ribeiro CH, Lorenzo-Ferreiro C, Molina MC (2019) Optimization of culture conditions for the expression of three different insoluble proteins in Escherichia coli. Sci Rep 9: 16850.
8. Han Y, Luo Z, Zhai W, Zheng Y, Liu H, Wang Y, Wu E, Xiong F, Ma Y (2020) Comparison of the clinical manifestations between dif-ferent age groups of patients with overseas imported COVID-19. PLoS One 15: e0243347.
9. Ji T, Liu Z, Wang G, Guo X, Akbar khan S, Lai C, Chen H, Huang S, Xia S, Chen B, Jia H, Chen Y, Zhou Q (2020) Detection of COVID-19: A review of the current literature and future perspectives. Biosens Bioelectron 166: 112455.
10. Jin Q, Yang J, Lu Q, Guo J, Deng R, Wang Y, Wang S, Wang S, Chen W, Zhi Y, Wang L, Yang S, Zhang G (2012) Development of an immunochromatographic strip for the detection of antibodies against Porcine circovirus-2. J Vet Diagn Invest 24: 1151-1157.
11. Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W, Duan G (2020) Virology, epidemiology, pathogenesis, and control of COVID-19. Vi-ruses 12: 372.
12. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, Azman AS, Reich NG, Lessler J (2020) The incubation period of coro-navirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med 172: 577-582.
13. Leung NH (2021) Transmissibility and transmission of respiratory viruses. Nat Rev Microbiol 19: 528-545.
14. Liao M, Yan J, Wang X, Qian H, Wang C, Xu D, Wang B, Yang B, Liu S, Zhou M, Gao Q, Zhou Q, Luo J, Li Z, Liu W (2020) De-velopment and clinical application of a rapid SARS-CoV-2 antibody test strip: A multi-center assessment across China. J Clin Lab Anal 35: e23619.
15. Liu P, Zong Y, Jiang S, Jiao Y, Yu X (2021) Development of a nucleocapsid protein-based ELISA for detection of human IgM and IgG antibodies to SARS-CoV-2. ACS Omega 6: 9667-9671.
16. Lv Y, Ma Y, Si Y, Zhu X, Zhang L, Feng H, Tian D, Liao Y, Liu T, Lu H, Ling Y (2021) Rapid SARS-CoV-2 antigen detection poten-tiates early diagnosis of COVID-19 disease. Biosci Trends 15: 93-99.
17. Mak GC, Cheng PK, Lau SS, Wong KK, Lau CS, Lam ET, Chan RC, Tsang DN (2020) Evaluation of rapid antigen test for detection of SARS-CoV-2 virus. J Clin Virol 129: 104500.
18. Malik YA (2020) Properties of coronavirus and SARS-CoV-2. Malays J Pathol 42: 3-11.
19. Meyer NJ, Gattinoni L, Calfee CS (2021) Acute respiratory distress syndrome. Lancet 398: 622-637.
20. Okba NM, Müller MA, Li W, Wang C, GeurtsvanKessel CH, Corman VM, Lamers MM, Sikkema RS, de Bruin E, Chandler FD, Yazdanpanah Y, Hingrat QL, Descamps D, Houhou-Fidouh N, Reusken CB, Bosch BJ, Drosten C, Koopmans MP, Haagmans BL (2020) Severe acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus disease patients. Emerg Infect Dis 26: 1478-1488.
21. Rump A, Risti R, Kristal ML, Reut J, Syritski V, Lookene A, Boudinot SR (2021) Dual ELISA using SARS-CoV-2 nucleocapsid pro-tein produced in E. coli and CHO cells reveals epitope masking by N-glycosylation. Biochem Biophys Res Commun 534: 457-460.
22. Singh A, Upadhyay V, Upadhyay AK, Singh SM, Panda AK (2015) Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb Cell Fact 14: 41.
23. Tian Y, Zhang G, Liu H, Ding P, Jia R, Zhou J, Chen Y, Qi Y, Du J, Liang C, Zhu X, Wang A (2022) Screening and identification of B cell epitope of the nucleocapsid protein in SARS-CoV-2 using the monoclonal antibodies. Appl Microbiol Biotechnol 106: 1151-1164.
24. Vashisht K, Goyal B, Pasupureddy R, Na BK, Shin HJ, Sahu D, De S, Chakraborti S, Pandey KC (2023) Exploring the immunodomi-nant epitopes of SARS-CoV-2 nucleocapsid protein as exposure biomarker. Cureus 15: e34827.
25. Wang Y, Liu X, Tao L, Xu P, Gao X, Li H, Yang Z, Wu W (2017) Expression and immunogenicity of VP40 protein of ZEBOV. Arch Iran Med 20: 246-250.
26. Wang YB, Li YH, Li QM, Xie WT, Guo CL, Guo JQ, Deng RG, Zhang GP (2019) Development of a blocking immunoperoxidase monolayer assay for differentiation between pseudorabies virus-infected and vaccinated animals. Pol J Vet Sci 44: 717-723.
27. Zeng W, Liu G, Ma H, Zhao D, Yang Y, Liu M, Mohammed A, Zhao C, Yang Y, Xie J, Ding C, Ma X, Weng J, Gao Y, He H, Jin T (2020) Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochem Biophys Res Commun 527: 618-623.
28. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579: 270-273.
Go to article

Authors and Affiliations

Y.B. Wang
1
S.W. Wang
2
Q.Y. Jin
3
L.P. Chen
4
F.Q. Zhang
1
J.J. Shi
1
Y. Yin
5
Z.X. Fan
1
X.Y. Liu
6
L.P. Wang
6
P. Li
6

  1. School of Public Health, Xinxiang Medical University, Xinxiang 453003, P.R. China
  2. School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, P.R. China
  3. Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, P.R. China
  4. Gushi County Center for Animal Disease Control and Prevention, Xinyang 465200, P.R. China
  5. Mingde College of Xinxiang Medical University, Xinxiang 453003, P.R. China
  6. School of Biological Engineering, Xinxiang University, Xinxiang 453003, P.R. China
Download PDF Download RIS Download Bibtex

Abstract

We investigated changes in concentrations of ADP (adiponectin), LEP (leptin), BHBA (beta-hydroxybutyric acid), NEFA (non-esterified fatty acid), Glucose (Glu) and INS (insulin) in serum of healthy perinatal dairy cows and cows with ketosis. Twenty-one healthy cows and seventeen cows with ketosis from a herd of a total 60 Holstein cows (near dry period i.e. 56 days antepartum) were selected. Blood was collected through the tail vein every 7 days, from 56 day antepartum to 56 day postpartum. Serum ADP, LEP, BHBA, NEFA, Glu, and INS concentrations were determined, and ketosis was diagnosed through serum BHBA (≥1.2 mmol/L). We showed the concentration of serum adipokines and energy balancing indices were stable during antepar- tum period. However, ADP concentration increased while LEP decreased, and there were a significant increase in cows with ketosis compared to that of in healthy cows. Serum BHBA and NEFA concentrations increased significantly at first, and then gradually decreased in both healthy cows and cows with ketosis. However, cows with ketosis showed higher concentrations of BHBA and NEFA which restored later. The serum concentration of Glu in both healthy dairy cows and cows with ketosis showed a decreasing trend. INS concentration in healthy cows was decreased while it was increased in cows with ketosis. The results reflect the extent of hypo- glycemia and lipid mobilization postpartum, suggest IR exists in cows with ketosis while serum ADP and LEP might play roles in the development of ketosis.

Go to article

Authors and Affiliations

L. Shen
B. Qian
J. Xiao
Y. Zhu
S. Hussain
J. Deng
G. Peng
Z. Zuo
L. Zou
S. Yu
X. Ma
Z. Zhong
Z. Ren
Y. Wang
ORCID: ORCID
H. Liu
ORCID: ORCID
Z. Zhou
D. Cai
Y. Hu
X. Zong
S. Cao
Download PDF Download RIS Download Bibtex

Abstract

Emerging researches in humans, pigs and mice, highlighted that estrogen plays a pivotal role in self-renewal and differentiation of bone marrow mesenchymal stem cells (BMSCs). The present study aimed at evaluating effects of 17 beta-estradiol (E2) on proliferation and apoptosis of canine-derived bone marrow mesenchymal stem cells (cBMSCs) in vitro. The results showed that E2 supplementation at the concentration of 10-11 M promoted the proliferation of cBMSCs by CCK-8 assay and RT-qPCR analysis for the proliferation-related genes, with proliferating cell nuclear antigen (PCNA), cyclin-D1 (CCND1) being up-regulated and cyclin-dependent kinase inhibitor 1B (CDKN1B) being down-regulated. Contrarily, analysis of fluorescence-activated cell sorting (FACS) and RT-qPCR demonstrated that E2 supplementation above 10-11 M had inhibitory effects on the proliferation of cBMSCs and induced apoptosis. Intriguingly, cBMSCs still possessed the capability to differentiate into osteoblasts and adipocytes with 10-11 M E2 addition. Taken together, this study determined the optimal culture condition of cBMSCs in vitro, and has important implications for further understanding the regulatory effect of E2 on the self-renewal of cBMSCs, which are helpful for the clinical application of BMSCs.

Go to article

Authors and Affiliations

Z.-H. Zhou
C.-W. Gu
J. Li
X.-Y. Huang
J.-Q. Deng
L.-H. Shen
S.-Z. Cao
J.-L. Deng
Z.-C. Zuo
Y. Wang
ORCID: ORCID
X.-P. Ma
Z.-H. Ren
S.-M. Yu

This page uses 'cookies'. Learn more