Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes a new dc-side active filter for wind generators that combines 12-pulse polygon auto-transformer rectifier with dc-side current injection method and dual-buck full-bridge inverter having not the “shoot-through” problem in conventional bridge-type inverters, and therefore this system with the character low harmonic distortion and high reliability. The proposed dc-side active filter is realized by using dual-buck full bridge converter, which directly injects compensation current at dc-side of two six-pulse diode bridges rectifiers. Compared with the conventional three-phase active power filter at ac-side, the system with the dc-side active filter draws nearly sinusoidal current by shaping the diode bridges output current to be triangular without using the instantaneous reactive power compensation technology, only using simple hysteretic current control, even though under load variation and unbalanced voltage disturbances, and while an acceptable linear approximation to the accurate waveform of injection current is recommended. The perfor- mance of the system was simulated using MATLAB/Simulink, and the possibility of the dc-side active filter eliminating current harmonics was confirmed in steady and transient states. The simulation results indicate, the system has a total harmonic distortion of current reduced closely to 1%, and a high power factor on the wind generator side.
Go to article

Authors and Affiliations

Xiao-Qiang Chen
Shou-Wang Zhao
Ying Wang
Download PDF Download RIS Download Bibtex

Abstract

To improve the power quality of a multi-pulse rectifier, a zigzag 18-pulse uncontrolled rectifier with an auxiliary circuit at the DC side is proposed. When the grid-side currents are sinusoidal waves, the required DC side injection currents to be compensated can be obtained by analyzing the AC-DC side relationship of diode bridge rectifiers. Then the 6 compensation currents generated by an active auxiliary circuit are injected into the DC side to eliminate the grid-side harmonics of the rectifier. The simulation results verifying the correctness of the theoretical analysis show that the proposed rectifier can mitigate the harmonic content, as the total harmonic distortion of the grid-side current is about 1.45%. In addition, the single-phase inverter used in the active auxiliary circuit has the characters of simple circuit structure and easy controllability.

Go to article

Authors and Affiliations

Jiongde Liu
Xiaoqiang Chen
Ying Wang
ORCID: ORCID
Tao Chen
Download PDF Download RIS Download Bibtex

Abstract

The problem of large speed loss exists in the traditional passing through the electric phase-separation method of trains, which is more prominent when trains pass through an electric phase-separation zone in the uphill section of long ramps and may lead to the trains not passing through the phase-separation zone safely. In order to solve this problem, based on the energy storage type railroad power conditioner, a train uninterrupted phase-separation passing system based on the energy storage type railroad power conditioner is proposed. The energy storage railroad power conditioner can realize the recovery and utilization of regenerative braking energy of the electrified railroad. In the structure of the energy storage railroad power conditioner, the single-phase inverter is led from the middle DC side of the energy storage railroad power conditioner and connected to the neutral line through theLCLfilter and the step-up transformer, which constitutes an uninterrupted phaseseparation passing system. The single-phase inverter is controlled using virtual synchronous generator technology, which allows the single-phase inverter to have external characteristics similar to those of a synchronous generator, providing support for the voltage and frequency in the neutral zone. The power required by the train to pass the electric phase-separation is provided by the power supply arm or the energy storage system, which not only improves the utilization rate of regenerative braking energy but also realizes the uninterrupted phaseseparation passing of the train through the control of the voltage in the neutral region.
Go to article

Authors and Affiliations

Ying Wang
1
ORCID: ORCID
Huan Yang
1
Xiaoqiang Chen
1
Ya Guo
2

  1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070 China
  2. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
Download PDF Download RIS Download Bibtex

Abstract

Transmission lines’ live working is one of an effective means to ensure the reliable operation of transmission lines. In order to solve the unsafe problems existing in the implementation of traditional live working, the paper uses ground-based lidar to collect point cloud data. A tile based on the pyramid data structure is proposed to complete the storage and calling of point cloud data. The improved bidirectional filtering algorithm is used to distinguish surface features quickly and obtain a 3D model of the site. Considering the characteristics of live working, the speed of data reading and querying, the nearest point search algorithm based on octree is used to acquire a real- time calculation of the safe distance of each point in the planned path, and the safety of the operation mode is obtained by comparing with the value specified in the regulation, and assist in making decisions of the operation plan. In the paper, the simulation of the actual working condition is carried out by taking the “the electric lifting device ascending” as an example. The experimental results show that the established three-dimensional model can meet the whole process control of the operation, and has achieved practical effect.
Go to article

Authors and Affiliations

Ying Wang
1
ORCID: ORCID
Haitao Zhang
1 2 3
Qiang Lv
3
Qiang Gao
3
Mingxing Yi
3

  1. School of Automation & Electrical Engineering, Lanzhou Jiaotong University, Gansu, China
  2. Key Laboratory of Opto-Electronic Technology and Intelligent Control Ministry of Education, Lanzhou Jiaotong University Gansu, China
  3. The UHV Company of State Grid Gansu Electric Power Company, Gansu, China
Download PDF Download RIS Download Bibtex

Abstract

In order to meet the lightweight requirements of high-speed trains, the inductancecapacitance (LC) resonance circuits are cancelled in the traction drive system of some high-speed electric multiple units (EMUs) in China, which will lead to large low-order current harmonics on the grid side in the traction drive system of EMUs, seriously affecting the power quality. Therefore, the low-order harmonic current of the traction drive system of an EMU is studied in this paper. Firstly, the working principle of a four-quadrant pulse rectifier in a traction drive system is analyzed, and then the generation mechanism of loworder current harmonics on the grid side is studied deeply. Secondly, the voltage outer loop and current inner loop control of a four-quadrant pulse rectifier are optimized respectively. In the voltage outer loop control, a Butterworth filter is designed to suppress the beat frequency voltage of the DC side voltage, so as to indirectly suppress the low-order current harmonics. In the current inner loop, a quasi-proportional resonance (PR) controller with harmonic compensation is used to suppress low-order current harmonics, and a novel loworder current harmonics suppression strategy based on the Butterworth filter and quasi-PR controller is proposed. Finally, the results of the simulated validation of the proposed control strategy show that compared with the existing method of the notch filter ¸ PR controller, the proposed optimal control strategy has a better effect on low-order current harmonic suppression, and improves the dynamic performance of the control system, further showing the correctness and effectiveness of the optimal control strategy.
Go to article

Authors and Affiliations

Feng Zhao
1
Jianing Zhang
1
ORCID: ORCID
Xiaoqiang Chen
1 2
Ying Wang
1 2
ORCID: ORCID

  1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, China
  2. Key Laboratory of Opto-Technology and Intelligent Control Ministry of Education, Lanzhou, China
Download PDF Download RIS Download Bibtex

Abstract

In order to achieve energy savings and promote on-site integration of photovoltaic energy in electrified railways, a topology structure is proposed for the integration of photovoltaic (PV) and the energy storage system (ESS) into the traction power supply system (TPSS) based on a railway power conditioner (RPC). This paper analyzes the composition and operation principles of this structure. To assess the economic benefits brought by the integration of photovoltaic and energy storage systems, a bilevel optimization model is established, with the objectives of optimizing energy storage capacity configuration and photovoltaic energy integration. The KKT (Karush–Kuhn–Tucker) method is employed to transform the model into a single-layer mixed-integer linear programming model, which is then solved using the CPLEX solver in MATLAB. The research findings indicate that, with the configuration of the ESS, the optimal PV consumption rate achieved is 96.8749%. Compared to a 100% PV consumption rate, the ESS capacity configuration is reduced by 13.14%, and the overall operational cost of the TPSS is at its lowest. The study suggests that the proposed bilevel optimization algorithm can more effectively consider PV consumption, leading to enhanced economic performance of the TPSS operation.
Go to article

Authors and Affiliations

Wei Zhang
1
ORCID: ORCID
Xiaoqiang Chen
1
Ying Wang
1
ORCID: ORCID

  1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University Lanzhou,730070 China
Download PDF Download RIS Download Bibtex

Abstract

Aiming at the problems of the negative sequence governance and regenerative braking energy utilization of electrified railways, a layered compensation optimization strategy considering the power flow of energy storage systems was proposed based on the railway power conditioner. The paper introduces the topology of the energy storage type railway power conditioner, and analyzes its negative sequence compensation and regenerative braking energy utilization mechanism. Considering the influence of equipment capacity and power flow of the energy storage system on railway power conditioner compensation effect, the objective function and constraint conditions of the layered compensation optimization of the energy storage type railway power conditioner were constructed, and the sequential quadratic programming method was used to solve the problem. The feasibility of the proposed strategy is verified by a multi-condition simulation test. The results show that the proposed optimization compensation strategy can realize negative sequence compensation and regenerative braking energy utilization, improve the power factor of traction substations when the system equipment capacity is limited, and it also has good real-time performance.
Go to article

Authors and Affiliations

Ying Wang
1
ORCID: ORCID
Yanqiang He
1
ORCID: ORCID
Xiaoqiang Chen
1
Miaomiao Zhao
1
Jing Xie
2

  1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070 China
  2. Xi’an Rail Transit Group Co., LTD Operation Branch Xi’an, 710000 China
Download PDF Download RIS Download Bibtex

Abstract

A three-level multi-input DC/DC converter is proposed to solve the problems of complex interface circuit structure and high economic cost for multi-source access to the joint power supply distribution system. In this structure, multiple dc sources are integrated into a three-level DC/DC converter. In comparison with the two-stage counterpart, two active switches and boost diodes are eliminated, while two blocking diodes are added to block the reverse current from the dc-link capacitors. In addition, when the input inductors work in the discontinuous conduction mode, power sharing among different input sources can be achieved by properly selecting the inductance value. The working principle of the converter is analyzed by introducing nine working modes in detail and deriving the steady-state relationship expressions. The parameter range of the element is determined and the design process of a group of dynamic parameter values is shown. Finally, the power electronics real-time simulation platform is built based on StarSim HIL and the corresponding experimental waveforms are given to verify the topology and analysis.
Go to article

Authors and Affiliations

Jingjing Tian
1
Jiaoping Qu
1
ORCID: ORCID
Feng Zhao
1
Xiaoqiang Chen
1 2
Ying Wang
1 2
ORCID: ORCID
Yang Gan
1

  1. School of Automation & Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, China
  2. Key Laboratory of Opto-technology and Intelligent Control, Lanzhou Jiaotong University, Ministry of Education, Lanzhou, China
Download PDF Download RIS Download Bibtex

Abstract

High-frequency resonance is a prominent phenomenon which affects the normal operation of the high-speed railway in China. Aiming at this problem, the resonance mechanism is analyzed first. Then, model predictive control and selective harmonic elimination pulse-width modulation (MPC-SHEPWM) combined control strategy is proposed, where the harmonics which cause the resonance can be eliminated at the harmonic source. Besides, the MPC is combined to make the current track the reference in transients. The proposed control has the ability to suppress the resonance while has a faster dynamic performance comparing with SHEPWM. Finally, the proposed MPC-SHEPWM is tested in a simulation model of CRH5 (Chinese Railway High-speed), EMUs (electric multiple units) and a traction power supply coupled system, which shows that the proposed MPC-SHEPWM approach can achieve the resonance suppression and shows a better dynamic performance.
Go to article

Bibliography

[1] Mollerstedt E., Bernhardsson B., Out of control because of harmonics-an analysis of the harmonic response of an inverter locomotive, IEEE Control Systems Magazine, vol. 20, no. 4, pp. 70–81 (2000).
[2] Sainz L., Caro M., Caro E., Analytical Study of the Series Resonance in Power Systems With the Steinmetz Circuit, IEEE Transactions on Power Delivery, vol. 24, no. 4, pp. 2090–2098 (2009).
[3] Lee H., Lee C., Jang G., Kwon S., Harmonic analysis of the korean high-speed railway using the eight-port representation model, IEEE Transactions on Power Delivery, vol. 21, no. 2, pp. 979–986 (2006).
[4] Holtz J., Kelin H., The propagation of harmonic currents generated by inverter-fed locomotives in the distributed overhead supply system, IEEE Transactions on Power Electronics, vol. 4, no. 2, pp. 168–174 (1989).
[5] Chang G.W., Lin H.W., Chen S.K., Modeling characteristics of harmonic currents generated by highspeed railway traction drive converters, IEEE Trans. Power Delivery, vol. 19, no. 2, pp. 766–773 (2004).
[6] Hu H., Shao Y., Tang L., Ma J., He Z., Gao S., Overview of Harmonic and Resonance in Railway Electrification Systems, IEEE Transactions on Industry Applications, vol. 54, no. 5, pp. 5227–5245 (2018).
[7] Kolar V., Palecek J., Kocman S. et al., Interference between electric traction supply network and distribution power network - resonance phenomenon, International Conference on Harmonics and Quality of Power, Bergamo, Italy (2010).
[8] Brenna M. et al., Investigation of resonance phenomena in high speed railway supply systems: Theoretical and experimental analysis, Elect. Power Syst. Res., vol. 81, no. 10, pp. 1915–1923 (2011).
[9] Hu H., Gao S., Shao Y., Wang K., He Z., Chen L., Harmonic Resonance Evaluation for Hub Traction Substation Consisting of Multiple High-Speed Railways, IEEE Transactions on Power Delivery, vol. 32, no. 2, pp. 910–920 (2017).
[10] Li J.,Wu M., Molinas M., Song K., Liu Q., Assessing High-Order Harmonic Resonance in Locomotive- Network Based on the Impedance Method, IEEE Access, vol. 7, pp. 68119–68131 (2019).
[11] Hu H., Tao H., Blaabjerg F., Wang X., He Z., Gao S., Train–Network Interactions and Stability Evaluation in High-Speed Railways–Part I: Phenomena and Modeling, IEEE Transactions on Power Electronics, vol. 33, no. 6, pp. 4627–4642 (2018).
[12] Lee H., Kim G., Oh S., Lee C., Optimal design for power quality of electric railway, SICE-ICASE International Joint Conf., Busan, Korea, pp. 3864–3869 (2006).
[13] Hu H., He Z., Gao S., Passive Filter Design for China High-Speed RailwayWith Considering Harmonic Resonance and Characteristic Harmonics, IEEE Transactions on Power Delivery, vol. 30, no. 1, pp. 505–514 (2015).
[14] Zhang X., Chen J., Zhang G., Wang L., Qiu R., Liu Z., An Active Oscillation Compensation Method to Mitigate High-Frequency Harmonic Instability and Low-Frequency Oscillation in Railway Traction Power Supply System, IEEE Access, vol. 6, pp. 70359–70367 (2018).
[15] Holtz J., Krah J.O., Suppression of time-varying resonances in the power supply line of AC locomotives by inverter control, IEEE Transactions on Industrial Electronics, vol. 39, no. 3, pp. 223–229 (1992).
[16] Zhang Y., Xiong J., Kong L., Wang X., A novel in-phase disposition SPWM pulse allocation strategy for cascaded H-bridge inverter, Archives of Electrical Engineering, vol. 67, no. 2, pp. 361–375 (2018).
[17] Cui H., Song W., Fang H., Ge X., Feng X., Resonant harmonic elimination pulse width modulationbased high-frequency resonance suppression of high-speed railways, IET Power Electronics, vol. 8, no. 5, pp. 735–742 (2015).
[18] Song K., Konstantinou G., MingliW., Acuna P., Aguilera R.P., Agelidis V.G.,Windowed SHE–PWM of Interleaved Four-Quadrant Converters for Resonance Suppression in Traction Power Supply Systems, IEEE Transactions on Power Electronics, vol. 32, no. 10, pp. 7870–7881 (2017).
[19] Dahidah M.S.A., Konstantinou G., Agelidis V.G., A Review of Multilevel Selective Harmonic Elimination PWM: Formulations, Solving Algorithms, Implementation and Applications, IEEE Transactions on Power Electronics, vol. 30, no. 8, pp. 4091–4106 (2015).
[20] Rodriguez J. et al., Predictive control of three-phase inverter, Electronics Letters, vol. 40, no. 9, pp. 561–563 (2004).
[21] Aguilera R.P. et al., Selective Harmonic Elimination Model Predictive Control for Multilevel Power Converters, IEEE Transactions on Power Electronics, vol. 32, no. 3, pp. 2416–2426 (2017).
[22] Cui H., Feng X., SongW., Modeling of high-order harmonic load for high-speed train, Electr. Power Equip. Autom., vol. 33, no. 7, pp. 92–99 (2013).
[23] Dolara A., Gualdoni M., Leva S., Impact of high-voltage primary supply lines in the 2 x 25 kV 50 Hz railway system on the equivalent impedance at pantograph terminals, IEEE Transactions on Power Delivery, vol. 27, no. 1, pp. 164–175 (2012).
[24] Dahidah M.S.A., Konstantinou G., Agelidis V.G., A Review of Multilevel Selective Harmonic Elimination PWM: Formulations, Solving Algorithms, Implementation and Applications, IEEE Transactions on Power Electronics, vol. 30, no. 8, pp. 4091–4106 (2015).
[25] Liang T.J., Hoft R.G., Walsh function method of harmonic elimination, Proc. IEEE Appl. Power Electron. Conf., San Diego, CA, USA, Mar. 7–11, pp. 847–853 (1993).
[26] Yang K., Yuan Z., Yuan R., YuW., Yuan J.,Wang J., A Groebner Bases Theory-Based Method for Selective Harmonic Elimination, IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 6581–6592 (2015).
[27] Kavitha R., Thottungal Rani, WHTD missisation in hybird multilvel inverter biogeographcial based Optimisation, Archives of Electrical Engineering, vol. 63, no. 2, pp. 187–196 (2014).
[28] Rodriguez J. et al., State of the Art of Finite Control Set Model Predictive Control in Power Electronics, IEEE Transactions on Industrial Informatics, vol. 9, no. 2, pp. 1003–1016 (2013).

Go to article

Authors and Affiliations

Sitong Chen
1
ORCID: ORCID
Xiaoqiang Chen
1
Ying Wang
1
ORCID: ORCID
Ye Xiong
1

  1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, China

This page uses 'cookies'. Learn more