Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The present study was aimed to establish a novel TaqMan real-time PCR (RTm-PCR) for detecting and typing bovine viral diarrhea virus (BVDV), and also to develop a diagnostic proto- col which simplifies sample collection and processing. Universal primers and TaqMan-MGB probes were designed from the known sequences of conserved 5′ - and 3′-untranslated regions (5’UTR, 3’UTR) of the NADL strain of BVDV. Prior to optimizing the assay, cDNAs were tran- scribed in vitro to make standard curves. The sensitivity, specificity and stability (reproducibility) were evaluated. The RTm-PCR was tested on the 312 feces specimens collected from persistently infected (PI) calves. The results showed the optimum conditions for RTm-PCR were 17.0 μmol/L primer, 7.5 μmol/L probe and 51.4°C annealing temperature. The established TaqMan RTm-PCR assay could specially detect BVDV without detecting any other viruses. Its detection limit was 1.55×100 copies/μL for viral RNA. It was 10000-fold higher than conventional PCR with excel- lent specificity and reproducibility. 312 samples were tested using this method and universal PCR from six dairy farms, respectively. Positive detections were found in 49 and 44 feces samples, respectively. The occurrence rate was 89.80%. In conclusion, the established TaqMan RTm-PCR could rapidly detect BVDV and effectively identify PI cattle. The detection limit of RTm-PCR was 1.55 copies/μL. It will be beneficial for enhancing diagnosis and therapy efficacy and reduce losses in cattle farms.

Go to article

Authors and Affiliations

H. Liang
J. Geng
S. Bai
A. Aimuguri
Z. Gong
R. Feng
X. Shen
S. Wei
Download PDF Download RIS Download Bibtex

Abstract

Bovine parvovirus (BPV), bovine coronavirus (BCoV) and bovine parainfluenza virus (BPIV) are common etiologies causing gastrointestinal and respiratory diseases in dairy herds. However, there are few reports on the synchronous detection of BPV, BCoV and BPIV. The present article aimed to develop a quick and accurate RT-PCR assay to synchronously detect BPV, BCoV and BPIV based on their specific probes. One pair universal primers, one pair specific primers and one specific probe was designed and synthesized. After the concentrations of primer and probe and annealing temperature were strictly optimized, the specificity, sensitivity and repeatability of the established triplex probe qRT-PCR were evaluated, respectively. The results showed the recombinant plasmids of pMD18-T-BPV, pMD18-T-BCoV and pMD18-T-BPIV were 554bp, 699bp and 704bp, respectively. The optimal annealing temperature was set at 45.0°C for triplex qRT-PCR. The triplex probe qRT-PCR can only synchronously detect BPV, BCoV and BPIV. Detection sensitivities were 2.0×102, 2.0×102 and 2.0×101 copies/μL for BPV, BCoV and BPIV, being 1000-fold greater than that in the conventional PCR. Detection of clinical samples demon- strated that triplex probe qRT-PCR had a higher sensitivity and specificity. The intra-assay and inter-assay coefficient of variation were lower than 2.0%. Clinical specimens verified that the triplex qRT-PCR had a higher sensitivity and specificity than universal PCR. In conclusion, this triplex probe qRT-PCR could detect only BPV, BCoV and BPIV. Minimum detection limits were 2.0×102 copies/μL for BPV and BCoV, and 2.0×101 copies/μL for BPIV. The sensitivity of this triplex probe qRT-PCR was 1000-fold greater than that in the conventional PCR. The newly qRT-PCR could be used to monitor or differentially diagnose virus infection.

Go to article

Authors and Affiliations

J. Geng
Y. Niu
L. Wei
Q. Li
Z. Gong
S. Wei

This page uses 'cookies'. Learn more