Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to indicate the influence of consolidation processes on microstructure and selected mechanical properties of powder metallurgy Ti-5Al-5Mo-5V-3Cr alloy, which was produced by blending of elemental powders method. Morphology of the mixture and its ingredients were examined using scanning electron microscopy. The consolidation of powders mixture was conducted using two approaches. The first consisted of the uniaxial hot pressing process, the second included two steps – uniaxial cold pressing process and sintering under argon protective atmosphere. Microstructural analysis was performed for both as-pressed compacts using light microscopy. Additionally, computed tomography studies were carried out, in order to examine the internal structure of compacts. Chosen mechanical properties, such as Vickers hardness and compression strength was also determined and compared. The conducted research proves that the proposed production method leads to obtain materials with no structural defects and relatively low porosity. Moreover, due to the proper selection of manufacturing parameters, favorable microstructures can be received, as well as mechanical properties, which are comparable to conventionally produced material with the corresponding chemical composition.

Go to article

Authors and Affiliations

K. Zyguła
ORCID: ORCID
M. Wojtaszek
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a method based on the use of fuzzy logic for the rapid selection of optimal induction sintering parameters. The prepared fuzzy controller uses expert knowledge developed from the results of induction sintering tests of Ti-5Al-5Mo-5V-3Cr alloy green compacts produced from a mixture of elemental powders. The analysis of the influence of the applied sintering parameters on the material characteristics was based on the evaluation of the microstructure state and the measurement of the relative density of the samples after sintering. In this way, a universal tool for estimating the sintering parameters of titanium powder-based green compacts was obtained. It was shown that with the help of fuzzy logic it is possible to analyze the influence of the parameters of the manufacturing process of metal powder materials on the quality of the obtained products.
Go to article

Authors and Affiliations

K. Zyguła
1
ORCID: ORCID
M. Wojtaszek
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an approach based on the use of the fuzzy logic method as a tool for quick estimation of favorable parameters of hot plastic working of selected alloy and for the identification of those combinations of parameters that should be avoided. The idea and basic principles of operation of fuzzy controllers for the selection of thermo-mechanical parameters of hot metal forming were presented. The most important information necessary for a quick analysis based on knowledge engineering has been compiled. An example of the fuzzy controller using the information obtained based on plastometric test data and the results of observation of the microstructure state of deformed samples at various temperature and strain rate variants is presented. For the tested alloy, it was shown that the analysis of the parameters of their plastic processing using the fuzzy logic method, based on properly formulated expert knowledge, leads to obtaining satisfactory results. Thus, it was confirmed that fuzzy logic can be successfully used as a tool for quick estimation of correct or unfavorable thermal and mechanical combinations of hot forging processes.
Go to article

Authors and Affiliations

M. Wojtaszek
1
ORCID: ORCID
K. Zyguła
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland

This page uses 'cookies'. Learn more